Integrated Science
7th Edition
ISBN: 9780077862602
Author: Tillery, Bill W.
Publisher: Mcgraw-hill,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 8CQ
(a)
To determine
The theoretical physical circumstances that lead to the creation of a white dwarf star.
(b)
To determine
The theoretical physical circumstances that lead to the creation of a red giant.
(c)
To determine
The theoretical physical circumstances that lead to the creation of a neutron star.
(d)
To determine
The theoretical physical circumstances that lead to the creation of a black hole.
(e)
To determine
The theoretical physical circumstances that lead to the creation of a supernova.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The mass-luminosity relation describes the mathematical relationship between luminosity and mass for main sequence stars. It describes how a star with a mass of 4 M⊙ would have a luminosity of ______ L⊙.
If a star has a radius 1/2 that of the Sun and a temperature 4 that of the Sun, how many times higher is the star's luminosity than that of the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125)
If a star has a radius 2 times larger than the Sun's and a luminosity 1/4th that of the Sun, how many times higher is the star's temperature than that of the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125)
If a star has a surface temperature 2 times lower than the Sun's and a luminosity the same as the Sun, how many times larger is the star than the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125)
Betelgeuse is a nearby supergiant that will eventually explode into a supernova. Let's see
how awesome it would look. At peak brightness, the supernova will have a luminosity of
about 10 billion times the Sun. It is 600 light-years away. All stellar brightnesses are
compared with Vega, which has an intrinsic luminosity of about 60 times the Sun, a distance
of 25 light-years, an absolute magnitude of 0.6 and an apparent magnitude of 0 (by
definition).
a) At peak brightness, how many times brighter will Betelgeuse be than Vega?
b) Approximately what apparent magnitude does this correspond to?
c) The Sun is about -26.5 apparent magnitude. What fraction of the Sun's brightness will
Betelgeuse be?
One way to calculate the radius of a star is to use its luminosity and temperature and assume that the star radiates approximately like a blackbody. Astronomers have measured the characteristics of central stars of planetary nebulae and have found that a typical central star is 16 times as luminous and 20 times as hot (about 110,000 K) as the Sun. Find the radius in terms of the Sun’s. How does this radius compare with that of a typical white dwarf?
Chapter 12 Solutions
Integrated Science
Ch. 12.1 - Stars twinkle and planets do not twinkle because...Ch. 12.6 - Prob. 2SCCh. 12.6 - Prob. 3SCCh. 12.6 - Prob. 4SCCh. 12.6 - Prob. 5SCCh. 12.6 - Prob. 6SCCh. 12.6 - Prob. 7SCCh. 12.6 - Prob. 8SCCh. 12.7 - Prob. 9SCCh. 12.7 - Prob. 10SC
Ch. 12.7 - Prob. 11SCCh. 12.7 - Prob. 12SCCh. 12 - What is a light-year, and how is it defined?Ch. 12 - Prob. 2CQCh. 12 - Prob. 3CQCh. 12 - What is the Hertzsprung-Russell diagram?Ch. 12 - Prob. 5CQCh. 12 - Prob. 6CQCh. 12 - Prob. 7CQCh. 12 - Prob. 8CQCh. 12 - Prob. 9CQCh. 12 - Prob. 10CQCh. 12 - Prob. 11CQCh. 12 - Prob. 12CQCh. 12 - Prob. 13CQCh. 12 - Prob. 14CQCh. 12 - Prob. 15CQCh. 12 - Prob. 16CQCh. 12 - Prob. 17CQCh. 12 - Prob. 18CQCh. 12 - Prob. 19CQCh. 12 - Prob. 20CQCh. 12 - Prob. 21CQCh. 12 - Prob. 22CQCh. 12 - Analyze when apparent magnitude is a better scale...Ch. 12 - Prob. 24CQCh. 12 - Prob. 25CQCh. 12 - Prob. 1PEACh. 12 - Prob. 2PEACh. 12 - Prob. 3PEACh. 12 - Prob. 4PEACh. 12 - Prob. 5PEACh. 12 - Prob. 6PEACh. 12 - Prob. 7PEACh. 12 - Prob. 8PEACh. 12 - Prob. 9PEACh. 12 - Prob. 10PEACh. 12 - Prob. 11PEACh. 12 - Prob. 1PEBCh. 12 - Prob. 2PEBCh. 12 - Prob. 3PEBCh. 12 - Prob. 4PEBCh. 12 - Prob. 5PEBCh. 12 - Prob. 6PEBCh. 12 - Prob. 7PEBCh. 12 - Prob. 8PEBCh. 12 - Prob. 9PEBCh. 12 - Prob. 10PEBCh. 12 - Prob. 11PEB
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An M dwarf star of mass 0.1 solar masses, a radius of 0.13 solar radii and a photospheric temperature of 2708 Kelvin. Assuming the dwarf contains the same mixture of elements as the Sun, and that the thermal pressure of the Sun's core is 1.3 x 10^14 N/m^2 estimate the ratio between the thermal pressure in the M dwarf's core versus that of the Sun. select unitsarrow_forwardFor a main sequence star with luminosity L, how many kilograms of hydrogen is being converted into helium per second? Use the formula that you derive to estimate the mass of hydrogen atoms that are converted into helium in the interior of the sun (LSun = 3.9 x 1026 W). (Note: the mass of a hydrogen atom is 1 mproton and the mass of a helium atom is 3.97 mproton. You need four hydrogen nuclei to form one helium nucleus.)arrow_forwardQUESTION 16 Use the figure shown below to complete the following statement: A low-mass protostar (0.5 to 8M the mass compared to our sun) remains roughly constant in decreases in until it makes a turn towards the main sequence, as it follows its evolutionary track. Protostars of different masses follow diferent paths on their way to the main sequence. 107 Luminosity (L) 10 105 10 107 10² 101 1 10-1 10-2 10-3 Spectral type 0.01 R 0.001 Re 60 M MAIN SEQUENCE 40,000 30,000 20 Mau 10 Mgun 5 Mun 0.1 Run Ren radius; temperature luminosity; radius 3 Min. 05 BO temperature; luminosity Oluminosity: temperature radius: luminosity 1 M 10,000 6000 Surlace temperature (K) 1,000 Rs 2 M STAR L 0.8 M B5 AO FOGO КБ МБ -10 +10 3000 Absolute visual magnitude andarrow_forward
- Match the spectral type and luminosity class to theletters shown on the Hertzsprung-Russell diagram 1) A WD (White Dwarf)2) G V (Main Sequence) 3) M V (Main Sequence)4) M I (Supergiant)5) G III (Giant)arrow_forwardfill in missing word a) One difference between a type I and type II supernova is the formation of the element _________ in the core that produces a type II supernova b) The Chandrasekhar limit of a star (1.4 solar masses) is the mass limit above which a star cannot remain stable as a ________ ________. c) The temperature of a red giant star is ____________ than it was when the star was a dwarf.arrow_forwardQuestion 41 .Suppose you are looking at H-R diagrams of two similar star clusters. The most luminous main sequence stars in the Porcini cluster are much more luminous than the most luminous main sequence stars in the Morel cluster. What can you conclude? O the Porcini cluster is younger than the Morel cluster O the Porcini cluster is farther away than the Morel cluster O the Porcini cluster is lower in metallicity than the Morel cluster O the Porcini cluster is larger in diameter than the Morel clusterarrow_forward
- A main sequence star of mass 25 M⊙has a luminosity of approximately 80,000 L⊙. a. At what rate DOES MASS VANISH as H is fused to He in the star’s core? Note: When we say “mass vanish '' what we really mean is “gets converted into energy and leaves the star as light”. Note: approximate answer: 3.55 E14 kg/s b. At what rate is H converted into He? To do this you need to take into account that for every kg of hydrogen burned, only 0.7% gets converted into energy while the rest turns into helium. Approximate answer = 5E16 kg/s c. Assuming that only the 10% of the star’s mass in the central regions will get hot enough for fusion, calculate the main sequence lifetime of the star. Put your answer in years, and compare it to the lifetime of the Sun. It should be much, much shorter. Approximate answer: 30 million years.arrow_forwardWhich of the following is least reasonable regarding novae and supernovae? Group of answer choices A type I (carbon-detonation) supernova results when a white dwarf in a binary system absorbs enough mass from its companion to push it over the Chandrasekhar limit. A type II supernova results from any supermassive star at the end of its life, when it runs out of fusion energy and collapses. A nova can occur multiple times in a binary system. If a white dwarf in a binary system absorbs enough mass to go beyond the Chandrasekhar limit, the white dwarf explodes as a supernova. The reason a type I supernova does not produce hydrogen lines is that the explosion originates from a stellar core (white dwarf), where hydrogen has already fused to produce heavier elements (so there is no longer any hydrogen). More supernovae are observed in the Milky Way because they are much closer to us than those in other galaxies.arrow_forwardIf a neutron Star has a radius of 12 km and a temperature of 8.0 x 10^6 K, how luminous is it? Express your answer in watts and also in solar luminosity units. (Hint: Use the relation L/L= (R/R)^2(T/T)^4 . Use 5,800 K for the surface temperature of the Sun. The luminosity of the sun is 3.83 x 10^26W) luminosity in watts ________ W luminosity in solar luminosity units ______ Larrow_forward
- Describe the evolution of a star with a mass similar to that of the Sun, from the protostar stage to the time it first becomes a red giant. Give the description in words and then sketch the evolution on an HR diagram.arrow_forwardDescribe the evolution of a star with a mass like that of the Sun, from the main-sequence phase of its evolution until it becomes a white dwarf.arrow_forwardLook elsewhere in this book for necessary data, and indicate what the final stage of evolution-white dwarf, neutron star, or black hole-will be for each of these kinds of stars. A. Spectral type-O main-sequence star B. Spectral type-B main-sequence star C. Spectral type-A main-sequence star D. Spectral type-G main-sequence star E. Spectral type-M main-sequence stararrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning