(a)
Interpretation:In mercury number of electrons occupied by atomic orbitals with
Concept introduction:Atomic orbital is mathematical function that depicts wave behavior of electrons in atom. It is used to indicate probability to find electrons in particular region around atomic nucleus. Probability density to find electron in space around sphere located at particular distance from nucleus is determined by radial distribution function.
Energy, size, shape, and orientation of atomic orbital are determined with help of some numbers. These numbers are called quantum numbers and are obtained from solution of Schrodinger equation of hydrogen atom by application of boundary conditions.
Below mentioned are four quantum numbers.
1. Principal Quantum Number
It is represented by
2.
It is represented by
Designation of orbitals on basis of different
3. Magnetic Quantum Number
This quantum number is denoted by
4. Spin Quantum Number
This quantum number is represented by
(a)

Answer to Problem 88E
Number of electrons occupied by atomic orbitals with
Explanation of Solution
The element
Since the principle quantum number of mercury is 3 that is it is present in third energy level. Type of orbitals present in third level is
Total number of orbitals are expressed as
Hence, there are total 9 orbitals in third energy level and each orbital has minimum 2 electrons. Therefore, number of electrons in mercury is 18.
(b)
Interpretation:In mercury number of electrons occupied by
Concept introduction:Atomic orbital is mathematical function that depicts wave behavior of electrons in atom. It is used to indicate probability to find electrons in particular region around atomic nucleus. Probability density to find electron in space around sphere located at particular distance from nucleus is determined by radial distribution function.
Energy, size, shape, and orientation of atomic orbital are determined with help of some numbers. These numbers are called quantum numbers and are obtained from solution of Schrodinger equation of hydrogen atom by application of boundary conditions.
Below mentioned are four quantum numbers.
1. Principal Quantum Number
It is represented by
2. Angular Momentum Quantum Number
It is represented by
Designation of orbitals on basis of different
3. Magnetic Quantum Number
This quantum number is denoted by
4. Spin Quantum Number
This quantum number is represented by
(b)

Answer to Problem 88E
In mercury, number of electrons occupied by
Explanation of Solution
The element
Since in mercury there are three
(c)
Interpretation:In mercury number of electrons occupied by
Concept introduction:Atomic orbital is mathematical function that depicts wave behavior of electrons in atom. It is used to indicate probability to find electrons in particular region around atomic nucleus. Probability density to find electron in space around sphere located at particular distance from nucleus is determined by radial distribution function.
Energy, size, shape, and orientation of atomic orbital are determined with help of some numbers. These numbers are called quantum numbers and are obtained from solution of Schrodinger equation of hydrogen atom by application of boundary conditions.
Below mentioned are four quantum numbers.
1. Principal Quantum Number
It is represented by
2. Angular Momentum Quantum Number
It is represented by
Designation of orbitals on basis of different
3. Magnetic Quantum Number
This quantum number is denoted by
4. Spin Quantum Number
This quantum number is represented by
(c)

Answer to Problem 88E
In mercury number of electrons occupied by
Explanation of Solution
The element
Since in mercury there are four
(d)
Interpretation:In mercury number of electrons that have spin up
Concept introduction:Atomic orbital is mathematical function that depicts wave behavior of electrons in atom. It is used to indicate probability to find electrons in particular region around atomic nucleus. Probability density to find electron in space around sphere located at particular distance from nucleus is determined by radial distribution function.
Energy, size, shape, and orientation of atomic orbital are determined with help of some numbers. These numbers are called quantum numbers and are obtained from solution of Schrodinger equation of hydrogen atom by application of boundary conditions.
Below mentioned are four quantum numbers.
1. Principal Quantum Number
It is represented by
2. Angular Momentum Quantum Number
It is represented by
Designation of orbitals on basis of different
3. Magnetic Quantum Number
This quantum number is denoted by
4. Spin Quantum Number
This quantum number is represented by
(d)

Answer to Problem 88E
In mercury number of electrons that have spin up
Explanation of Solution
The element
Paired electrons have half spin up and half spin down. Since
Want to see more full solutions like this?
Chapter 12 Solutions
WebAssign for Zumdahl's Chemical Principles, 8th Edition [Instant Access], Single-Term
- Tarrow_forwardPredict the major organic product(s) of the following reactions. Indicate which of the following mechanisms is in operation: SN1, SN2, E1, or E2.arrow_forward(c) (4pts) Mechanism: heat (E1) CH3OH + 1.5pts each _E1 _ (1pt) Br CH3OH (d) (4pts) Mechanism: SN1 (1pt) (e) (3pts) 1111 I H 10 Ill!! H LDA THF (solvent) Mechanism: E2 (1pt) NC (f) Bri!!!!! CH3 NaCN (3pts) acetone Mechanism: SN2 (1pt) (SN1) -OCH3 OCH3 1.5pts each 2pts for either product 1pt if incorrect stereochemistry H Br (g) “,、 (3pts) H CH3OH +21 Mechanism: SN2 (1pt) H CH3 2pts 1pt if incorrect stereochemistry H 2pts 1pt if incorrect stereochemistryarrow_forward
- A mixture of butyl acrylate and 4'-chloropropiophenone has been taken for proton NMR analysis. Based on this proton NMR, determine the relative percentage of each compound in the mixturearrow_forwardQ5: Label each chiral carbon in the following molecules as R or S. Make sure the stereocenter to which each of your R/S assignments belong is perfectly clear to the grader. (8pts) R OCH 3 CI H S 2pts for each R/S HO R H !!! I OH CI HN CI R Harrow_forwardCalculate the proton and carbon chemical shifts for this structurearrow_forward
- A. B. b. Now consider the two bicyclic molecules A. and B. Note that A. is a dianion and B. is a neutral molecule. One of these molecules is a highly reactive compound first characterized in frozen noble gas matrices, that self-reacts rapidly at temperatures above liquid nitrogen temperature. The other compound was isolated at room temperature in the early 1960s, and is a stable ligand used in organometallic chemistry. Which molecule is the more stable molecule, and why?arrow_forwardWhere are the chiral centers in this molecule? Also is this compound meso yes or no?arrow_forwardPLEASE HELP! URGENT!arrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





