
(a)
Interpretation:Number of valence electrons of
Concept introduction:The process by which electrons are distributed in molecular or atomic orbitals is termed as electronic configuration and is arranged in accordance to Aufbau principle. Hund’s rule of multiplicity states that electrons are filled singly in an orbital initially and then pairing occurs with different spin. Thus atomic orbital is filled in accordance to this rule.
The electrons that are present in the outermost shell of an atom are termed as valence electrons.In accordance to Aufbau principle electrons are filled in lower energy level and than to higher level. The electrons are arranged in order from higher energy level to lower level is as follows:
Electrons in orbitals are arranged as follows:
Total number of electrons occupied in each orbital is as follows:
(a)

Answer to Problem 87E
There are two valence electrons in
Explanation of Solution
The
Since last electrons are present in fourth shell, therefore, outermost shell configuration of
(b)
Interpretation:Number of valence electrons of
Concept introduction:The process by which electrons are distributed in molecular or atomic orbitals is termed as electronic configuration and is arranged in accordance to Aufbau principle. Hund’s rule of multiplicity states that electrons are filled singly in an orbital initially and then pairing occurs with different spin. Thus atomic orbital is filled in accordance to this rule.
The electrons that are present in the outermost shell of an atom are termed as valence electrons. In accordance to Aufbau principle electrons are filled in lower energy level and than to higher level. The electrons are arranged in order from higher energy level to lower level is as follows:
Electrons in orbitals are arranged as follows:
Total number of electrons occupied in each orbital is as follows:
(b)

Answer to Problem 87E
There are six valence electrons in
Explanation of Solution
The atomic number of
Since last electrons are present in two shells, therefore, outermost shell configuration of
(c)
Interpretation:Number of valence electrons of element 117 and specific valence electrons should be determined.
Concept introduction:The process by which electrons are distributed in molecular or atomic orbitals is termed as electronic configuration and is arranged in accordance to Aufbau principle. Hund’s rule of multiplicity states that electrons are filled singly in an orbital initially and then pairing occurs with different spin. Thus atomic orbital is filled in accordance to this rule.
The electrons that are present in the outermost shell of an atom are termed as valence electrons. In accordance to Aufbau principle electrons are filled in lower energy level and than to higher level. The electrons are arranged in order from higher energy level to lower level is as follows:
Electrons in orbitals are arranged as follows:
Total number of electrons occupied in each orbital is as follows:
(c)

Answer to Problem 87E
There are seven valence electrons in element 117 and valence shell configuration is
Explanation of Solution
The name of element 117 istennessine and its electronic configuration is as follows:
Since last electrons are present in seventh shell, therefore, outermost shell configuration of element 117 is
(d)
Interpretation:Number of valence electrons of
Concept introduction:The process by which electrons are distributed in molecular or atomic orbitals is termed as electronic configuration and is arranged in accordance to Aufbau principle. Hund’s rule of multiplicity states that electrons are filled singly in an orbital initially and then pairing occurs with different spin. Thus atomic orbital is filled in accordance to this rule.
The electrons that are present in the outermost shell of an atom are termed as valence electrons. In accordance to Aufbau principle electrons are filled in lower energy level and than to higher level. The electrons are arranged in order from higher energy level to lower level is as follows:
Electrons in orbitals are arranged as follows:
Total number of electrons occupied in each orbital is as follows:
(d)

Answer to Problem 87E
There are three valence electrons in
Explanation of Solution
The atomic number of
Since last electrons are present in fifth shell, therefore, outermost shell configuration of
(e)
Interpretation:Number of valence electrons of
Concept introduction:The process by which electrons are distributed in molecular or atomic orbitals is termed as electronic configuration and is arranged in accordance to Aufbau principle. Hund’s rule of multiplicity states that electrons are filled singly in an orbital initially and then pairing occurs with different spin. Thus atomic orbital is filled in accordance to this rule.
The electrons that are present in the outermost shell of an atom are termed as valence electrons. In accordance to Aufbau principle electrons are filled in lower energy level and than to higher level. The electrons are arranged in order from higher energy level to lower level is as follows:
Electrons in orbitals are arranged as follows:
Total number of electrons occupied in each orbital is as follows:
(e)

Answer to Problem 87E
There are eight valence electrons in
Explanation of Solution
The atomic number of
Since last electrons are present in third shell, therefore, outermost shell configuration of
(f)
Interpretation:Number of valence electrons of
Concept introduction:The process by which electrons are distributed in molecular or atomic orbitals is termed as electronic configuration and is arranged in accordance to Aufbau principle. Hund’s rule of multiplicity states that electrons are filled singly in an orbital initially and then pairing occurs with different spin. Thus atomic orbital is filled in accordance to this rule.
The electrons that are present in the outermost shell of an atom are termed as valence electrons. In accordance to Aufbau principle electrons are filled in lower energy level and than to higher level. The electrons are arranged in order from higher energy level to lower level is as follows:
Electrons in orbitals are arranged as follows:
Total number of electrons occupied in each orbital is as follows:
(f)

Answer to Problem 87E
There are five valence electrons in
Explanation of Solution
The atomic number of
Since last electrons are present in sixth shell, therefore, outermost shell configuration of
Want to see more full solutions like this?
Chapter 12 Solutions
EBK CHEMICAL PRINCIPLES
- 111 Carbonyl Chem Choosing reagants for a Wittig reaction What would be the best choices for the missing reagents 1 and 3 in this synthesis? 1. PPh3 3 1 2 2. n-BuLi • Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Explanation Check Click and drag to start drawing a structure. × ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Usearrow_forwardA student proposes the transformation below in one step of an organic synthesis. There may be one or more reactants missing from the left-hand side, but there are no products missing from the right-hand side. There may also be catalysts, small inorganic reagents, and other important reaction conditions missing from the arrow. • Is the student's transformation possible? If not, check the box under the drawing area. . If the student's transformation is possible, then complete the reaction by adding any missing reactants to the left-hand side, and adding required catalysts, inorganic reagents, or other important reaction conditions above and below the arrow. • You do not need to balance the reaction, but be sure every important organic reactant or product is shown. + T X O O лет-ле HO OH HO OH This transformation can't be done in one step.arrow_forwardDetermine the structures of the missing organic molecules in the following reaction: X+H₂O H* H+ Y OH OH Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structures of the missing organic molecules X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. X Sarrow_forward
- Predict the major products of this organic reaction. If there aren't any products, because nothing will happen, check the box under the drawing area instead. No reaction. HO. O :☐ + G Na O.H Click and drag to start drawing a structure. XS xs H₂Oarrow_forwardWhat are the angles a and b in the actual molecule of which this is a Lewis structure? H H C H- a -H b H Note for advanced students: give the ideal angles, and don't worry about small differences from the ideal groups may have slightly different sizes. a = b = 0 °arrow_forwardWhat are the angles a and b in the actual molecule of which this is a Lewis structure? :0: HCOH a Note for advanced students: give the ideal angles, and don't worry about small differences from the ideal that might be caused by the fact that different electron groups may have slightly different sizes. a = 0 b=0° Sarrow_forward
- Determine the structures of the missing organic molecules in the following reaction: + H₂O +H OH O OH +H OH X Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structure of the missing organic molecule X. Click and drag to start drawing a structure.arrow_forwardIdentify the missing organic reactant in the following reaction: x + x O OH H* + ☑- X H+ O O Х Note: This chemical equation only focuses on the important organic molecules in the reaction. Additional inorganic or small-molecule reactants or products (like H₂O) are not shown. In the drawing area below, draw the skeletal ("line") structure of the missing organic reactant X. Click and drag to start drawing a structure. Carrow_forwardCH3O OH OH O hemiacetal O acetal O neither O 0 O hemiacetal acetal neither OH hemiacetal O acetal O neither CH2 O-CH2-CH3 CH3-C-OH O hemiacetal O acetal CH3-CH2-CH2-0-c-O-CH2-CH2-CH3 O neither HO-CH2 ? 000 Ar Barrow_forward
- What would be the best choices for the missing reagents 1 and 3 in this synthesis? 1. PPh3 2 2. n-BuLi 3 Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Explanation Check Click and drag to start drawing a structure.arrow_forwardPredict the products of this organic reaction: NaBH3CN + NH2 ? H+ Click and drag to start drawing a structure. ×arrow_forwardPredict the organic products that form in the reaction below: + OH +H H+ ➤ ☑ X - Y Note: You may assume you have an excess of either reactant if the reaction requires more than one of those molecules to form the products. In the drawing area below, draw the skeletal ("line") structures of the missing organic products X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. Garrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co




