Concept explainers
(a)
The wavelength of the fundamental mode of vibration.
(a)
Answer to Problem 81P
The wavelength of the fundamental mode is
Explanation of Solution
The length of the string is
Write the expression for wavelength of the fundamental mode
Here,
Substitute
Thus, the wavelength of the fundamental mode is
(b)
The speed of the wave.
(b)
Answer to Problem 81P
The speed of the wave is
Explanation of Solution
Write the expression for speed of the wave
Here,
Substitute
Thus, the speed of the wave is
(c)
The linear mass density of the string.
(c)
Answer to Problem 81P
The linear mass density of the string is
Explanation of Solution
Write the expression for velocity of wave propagation on the string
Here,
Rearrange for
Substitute
Thus, the linear mass density of the string is
(d)
The maximum speed of a point on the vibrating string.
(d)
Answer to Problem 81P
The maximum speed of a point on the vibrating string
Explanation of Solution
The maximum amplitude on the string is
Write the expression for maximum speed
Here,
Substitute for
Here,
Substitute
Thus, the linear mass density of the string is
(e)
The frequency of the sound wave.
(e)
Answer to Problem 81P
The frequency of the sound wave in air is
Explanation of Solution
The frequency of the vibrating string is
The vibrating string puts the air molecules around it into vibratory motion. The frequency of vibration of the air molecules is same as the frequency of the vibrating string.
Hence the frequency of the sound wave in air is
(f)
The wavelength of sound in air medium at
(f)
Answer to Problem 81P
The wavelength of sound at
Explanation of Solution
The air temperature in kelvin is
Rearrange (II)
Here,
Write the expression for temperature dependence of velocity of sound
Here,
Substitute
Substitute
Thus, the wavelength of sound at
Want to see more full solutions like this?
Chapter 12 Solutions
Physics
- Checkpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forwardWhat is integrated science. What is fractional distillation What is simple distillationarrow_forward19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forward
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON