
Concept explainers
(a)
The wavelength of the fundamental mode of vibration.
(a)

Answer to Problem 81P
The wavelength of the fundamental mode is
Explanation of Solution
The length of the string is
Write the expression for wavelength of the fundamental mode
Here,
Substitute
Thus, the wavelength of the fundamental mode is
(b)
The speed of the wave.
(b)

Answer to Problem 81P
The speed of the wave is
Explanation of Solution
Write the expression for speed of the wave
Here,
Substitute
Thus, the speed of the wave is
(c)
The linear mass density of the string.
(c)

Answer to Problem 81P
The linear mass density of the string is
Explanation of Solution
Write the expression for velocity of wave propagation on the string
Here,
Rearrange for
Substitute
Thus, the linear mass density of the string is
(d)
The maximum speed of a point on the vibrating string.
(d)

Answer to Problem 81P
The maximum speed of a point on the vibrating string
Explanation of Solution
The maximum amplitude on the string is
Write the expression for maximum speed
Here,
Substitute for
Here,
Substitute
Thus, the linear mass density of the string is
(e)
The frequency of the sound wave.
(e)

Answer to Problem 81P
The frequency of the sound wave in air is
Explanation of Solution
The frequency of the vibrating string is
The vibrating string puts the air molecules around it into vibratory motion. The frequency of vibration of the air molecules is same as the frequency of the vibrating string.
Hence the frequency of the sound wave in air is
(f)
The wavelength of sound in air medium at
(f)

Answer to Problem 81P
The wavelength of sound at
Explanation of Solution
The air temperature in kelvin is
Rearrange (II)
Here,
Write the expression for temperature dependence of velocity of sound
Here,
Substitute
Substitute
Thus, the wavelength of sound at
Want to see more full solutions like this?
Chapter 12 Solutions
Physics
- Question: For a liquid with typical values a = 10-3K-¹ K = 10-4 bar-1 V=50 cm³ mol-1, Cp 200 J mol-1K-1, calculate the following quantities at 300 K and 1 bar for one mole of gas: 1. () P ән 2. (9) T 3. (V) T 4. (1) P 5. (9) T 6. Cv 7. (OF)Tarrow_forwardA,B,C AND Darrow_forwardA bungee jumper plans to bungee jump from a bridge 64.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body weight stretches it by 1.55 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the bridge. (a) What length of cord should he use? Use subscripts 1 and 2 respectively to represent the 5.00 m test length and the actual jump length. Use Hooke's law F = KAL and the fact that the change in length AL for a given force is proportional the length L (AL = CL), to determine the force constant for the test case and for the jump case. Use conservation of mechanical energy to determine the length of the rope. m (b) What maximum acceleration will he…arrow_forward
- 210. Sometimes the Helmholtz free energy F(T, V, N) divided by temperature, T, is an interesting quantity. For example, the quantity is proportional to the logarithm of the equilibrium constant or solubilities. A. Derive a relationship showing that Find the constant of proportionality. a F αυ ƏT T B. Suppose F(T) depends on temperature in the following way: F(T)=2aT²+bT. Find S(T) and U(T).arrow_forwardchoosing East (e) is not correct!arrow_forwarddisks have planes that are parallel and centered Three polarizing On a common axis. The direction of the transmission axis Colish dashed line) in each case is shown relative to the common vertical direction. A polarized beam of light (with its axis of polarization parallel to the horizontal reference direction) is incident from the left on the first disk with int intensity So = 790 W/m². Calculate the transmitted intensity if 81=28.0° O2-35.0°, and O3 = 40.0° w/m² horizontal Өз 02arrow_forward
- A polarized light is incident on several polarizing disks whose planes are parallel and centered on common axis. Suppose that the transmission axis of the first polarizer is rotated 20° relative to the axis of polarization of the incident and that the transmission axis of each exis of light, additional analyzer is rotated 20° relative to the transmission axis the previous one. What is the minimum number of polarizer needed (whole number), so the transmitted light through all polarizing sheets has an Striking intensity that is less then 10% that the first polarizer?arrow_forwardA high energy pulsed laser emits 1.5 nano second-long pulse of average power 1.80x10" W. The beam is cylindrical with 2.00 mm in radius. Determine the rms value of the B-field? -Tarrow_forwardA 23.0-mw (mill:-Watts) laser puts out a narrow cyclindrical beam 50 mm in diameter. What is the average N/C. rms E-field?arrow_forward
- The average intensity of light emerging from a polarizing sheet is. 0.550 W/m², and the average intensity of the horizontally polarized light incident on the sheet is 0.940 W/m². Determine the angle that the transmission axis of the polarizing sheet makes with the horizontalarrow_forwardwe measure an At a particular moment in time and space, electromagnetic wave's electric and magnetic fields. We find the electric field & pointing North and the magnetic field B pointing Down. What is the direction of wave propagation? a. South b. West C. c. Up d. Down e. East f. North.arrow_forwardHello, please help with how to calculate impact velocity and rebound velocity. Thanks!arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





