FOUNDATIONS OF ASTRONOMY-WEBASSIGN
FOUNDATIONS OF ASTRONOMY-WEBASSIGN
14th Edition
ISBN: 9780357135655
Author: Seeds
Publisher: CENGAGE L
bartleby

Concept explainers

Question
Book Icon
Chapter 12, Problem 6P
To determine

The lifetime of main-sequences of Star A compared to the sun.

The lifetime of main-sequences of Star B compared to the sun.

The luminous of main-sequences of Star A compared to the sun.

The luminous of main-sequences of Star B compared to the sun.

Expert Solution & Answer
Check Mark

Answer to Problem 6P

The lifetime of main-sequences of Star A compared to the sun is 4×106solarlifetimes.

The lifetime of main-sequences of Star B compared to the sun is 600solarlifetimes.

The luminous of main-sequences of Star A is 4×107times more luminous than the sun.

The luminous of main-sequences of Star B is 1×104times luminous as the sun.

Explanation of Solution

Write the expression for the stellar life expectancies of star A.

    t*A=1M*A2.5        (I)

Here, t*A is the stellar life expectancy of star A, M*A is the luminosity of the main-sequence star A.

Rewrite the above expression for luminosity of star A.

    L*A=M*At*A        (II)

Here, L*A is luminous of main-sequences of Star A.

Write the expression for the stellar life expectancies of star B.

    t*B=1M*B2.5        (III)

Here, t*B is the stellar life expectancy of star B, M*B is the luminosity of the main-sequence star B.

Rewrite the above expression for luminosity of star B.

    L*B=M*Bt*B        (IV)

Here, L*B is luminous of main-sequences of Star B.

Conclusion:

Substitute 150 for M*A in (I) to find t*A

    t*A=1(150)2.5=3.63×1064×106solarlifetime

Substitute 150 for M*A, 4×106solarlifetime for t*A in (II) to find L*A.

    L*A=1504×106=3.75×1074×107times

Substitute 0.08 for M*B in (III) to find t*B

    t*B=1(0.08)2.5=552.43600solarlifetime

Substitute 0.08 for M*B, 600solarlifetime for t*B in (IV) to find L*B.

    L*B=0.08600=1.33×1041×104times

Therefore, the lifetime of main-sequences of Star A compared to the sun is 4×106solarlifetimes. The lifetime of main-sequences of Star A compared to the sun is 600solarlifetimes. The luminous of main-sequences of Star A is 4×107times more luminous than the sun.  The luminous of main-sequences of Star B is 1×104times luminous as the sun.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage