Foundations of Astronomy, Enhanced
Foundations of Astronomy, Enhanced
13th Edition
ISBN: 9781305980686
Author: Michael A. Seeds; Dana Backman
Publisher: Cengage Learning US
bartleby

Concept explainers

Question
Book Icon
Chapter 12, Problem 6P
To determine

The lifetime of main-sequences of Star A compared to the sun.

The lifetime of main-sequences of Star B compared to the sun.

The luminous of main-sequences of Star A compared to the sun.

The luminous of main-sequences of Star B compared to the sun.

Expert Solution & Answer
Check Mark

Answer to Problem 6P

The lifetime of main-sequences of Star A compared to the sun is 4×106solarlifetimes.

The lifetime of main-sequences of Star B compared to the sun is 600solarlifetimes.

The luminous of main-sequences of Star A is 4×107times more luminous than the sun.

The luminous of main-sequences of Star B is 1×104times luminous as the sun.

Explanation of Solution

Write the expression for the stellar life expectancies of star A.

    t*A=1M*A2.5        (I)

Here, t*A is the stellar life expectancy of star A, M*A is the luminosity of the main-sequence star A.

Rewrite the above expression for luminosity of star A.

    L*A=M*At*A        (II)

Here, L*A is luminous of main-sequences of Star A.

Write the expression for the stellar life expectancies of star B.

    t*B=1M*B2.5        (III)

Here, t*B is the stellar life expectancy of star B, M*B is the luminosity of the main-sequence star B.

Rewrite the above expression for luminosity of star B.

    L*B=M*Bt*B        (IV)

Here, L*B is luminous of main-sequences of Star B.

Conclusion:

Substitute 150 for M*A in (I) to find t*A

    t*A=1(150)2.5=3.63×1064×106solarlifetime

Substitute 150 for M*A, 4×106solarlifetime for t*A in (II) to find L*A.

    L*A=1504×106=3.75×1074×107times

Substitute 0.08 for M*B in (III) to find t*B

    t*B=1(0.08)2.5=552.43600solarlifetime

Substitute 0.08 for M*B, 600solarlifetime for t*B in (IV) to find L*B.

    L*B=0.08600=1.33×1041×104times

Therefore, the lifetime of main-sequences of Star A compared to the sun is 4×106solarlifetimes. The lifetime of main-sequences of Star A compared to the sun is 600solarlifetimes. The luminous of main-sequences of Star A is 4×107times more luminous than the sun.  The luminous of main-sequences of Star B is 1×104times luminous as the sun.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Kirchoff's Laws. A circuit contains 3 known resistors, 2 known batteries, and 3 unknown currents as shown. Assume the current flows through the circuit as shown (this is our initial guess, the actual currents may be reverse). Use the sign convention that a potential drop is negative and a potential gain is positive. E₂ = 8V R₁₁ = 50 R₂ = 80 b с w 11 www 12 13 E₁ = 6V R3 = 20 a) Apply Kirchoff's Loop Rule around loop abefa in the clockwise direction starting at point a. (2 pt). b) Apply Kirchoff's Loop Rule around loop bcdeb in the clockwise direction starting at point b. (2 pt). c) Apply Kirchoff's Junction Rule at junction b (1 pt). d) Solve the above 3 equations for the unknown currents I1, 12, and 13 and specify the direction of the current around each loop. (5 pts) I1 = A 12 = A 13 = A Direction of current around loop abef Direction of current around loop bcde (CW or CCW) (CW or CCW)
No chatgpt pls will upvote
4.) The diagram shows the electric field lines of a positively charged conducting sphere of radius R and charge Q. A B Points A and B are located on the same field line. A proton is placed at A and released from rest. The magnitude of the work done by the electric field in moving the proton from A to B is 1.7×10-16 J. Point A is at a distance of 5.0×10-2m from the centre of the sphere. Point B is at a distance of 1.0×10-1 m from the centre of the sphere. (a) Explain why the electric potential decreases from A to B. [2] (b) Draw, on the axes, the variation of electric potential V with distance r from the centre of the sphere. R [2] (c(i)) Calculate the electric potential difference between points A and B. [1] (c(ii)) Determine the charge Q of the sphere. [2] (d) The concept of potential is also used in the context of gravitational fields. Suggest why scientists developed a common terminology to describe different types of fields. [1]
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage