a.
Find the
a.

Answer to Problem 69SE
The 95% confidence interval for the slope of the population regression is
Explanation of Solution
Given info:
The data represents the values of the variables height in feet and price in dollars for a sample of warehouses.
Calculation:
Linear regression model:
In a linear equation
A linear regression model is given as
Regression:
Software procedure:
Step by step procedure to obtain regression equation using MINITAB software is given as,
- Choose Stat > Regression > Fit Regression Line.
- In Response (Y), enter the column of Price.
- In Predictor (X), enter the column of Height.
- Click OK.
Output using MINITAB software is given below:
Thus, the regression line for the variables sale price
Therefore, the slope coefficient of the regression equation is
Confidence interval:
The general formula for the confidence interval for the slope of the regression line is,
Where,
From the MINITAB output, the estimate of error standard deviation of slope coefficient is
Since, the level of confidence is not specified. The prior confidence level 95% can be used.
Critical value:
For 95% confidence level,
Degrees of freedom:
The sample size is
The degrees of freedom is,
From Table A.5 of the t-distribution in Appendix A, the critical value corresponding to the right tail area 0.025 and 17 degrees of freedom is 2.110.
Thus, the critical value is
The 95% confidence interval is,
Thus, the 95% confidence interval for the slope of the population regression is
Interpretation:
There is 95% confident, that the expected change in sale price associated with 1 foot increase in height lies between $0.888452 and $1.085948.
c.
Find the interval estimate for the true mean sale price of all warehouses with 25 ft truss height.
c.

Answer to Problem 69SE
The 95% specified confidence interval for the true mean sale price of all warehouses with 25 ft truss height is
Explanation of Solution
Calculation:
Here, the regression equation is
Expected sale price when the height is 25 feet:
The expected sale price with 25 ft height ware houses is obtained as follows:
Thus, the expected sale price with 25 ft height ware houses is 48.45.
Confidence interval:
The general formula for the
Where,
From the MINITAB output in part (a), the value of the standard error of the estimate is
The value of
i | Truss height x | |
1 | 12 | 144 |
2 | 14 | 196 |
3 | 14 | 196 |
4 | 15 | 225 |
5 | 15 | 225 |
6 | 16 | 256 |
7 | 18 | 324 |
8 | 22 | 484 |
9 | 22 | 484 |
10 | 24 | 576 |
11 | 24 | 576 |
12 | 26 | 676 |
13 | 26 | 676 |
14 | 27 | 729 |
15 | 28 | 784 |
16 | 30 | 900 |
17 | 30 | 900 |
18 | 33 | 1089 |
19 | 36 | 1296 |
Total |
Thus, the total of truss height is
The mean truss height is,
Thus, the mean truss height is
Covariance term
The value of
Thus, the covariance term
Since, the level of confidence is not specified. The prior confidence level 95% can be used.
Critical value:
For 95% confidence level,
Degrees of freedom:
The sample size is
The degrees of freedom is,
From Table A.5 of the t-distribution in Appendix A, the critical value corresponding to the right tail area 0.025 and 17 degrees of freedom is 2.110.
Thus, the critical value is
The 95% confidence interval is,
Thus, the 95% specified confidence interval for the true mean of all warehouses with 25 ft truss height is
Interpretation:
There is 95% specified confidence interval for the true mean of all warehouses with 25 ft truss height lies between $47.730 and $49.172.
d.
Find the prediction interval of sale price for a single warehouse of truss height 25 ft.
Compare the width of the prediction interval with the confidence interval obtained in part (a).
d.

Answer to Problem 69SE
The 95% prediction interval of sale price for a single warehouse of truss height 25 ft is
The prediction interval is wider than the confidence interval.
Explanation of Solution
Calculation:
Here, the regression equation is
From part (c), the the expected sale price with 25 ft height ware houses is
Prediction interval for a single future value:
Prediction interval is used to predict a single value of the focus variable that is to be observed at some future time. In other words it can be said that the prediction interval gives a single future value rather than estimating the mean value of the variable.
The general formula for
where
From the MINITAB output in part (a), the value of the standard error of the estimate is
From part (c), the truss height is
Since, the level of confidence is not specified. The prior confidence level 95% can be used.
Critical value:
For 95% confidence level,
Degrees of freedom:
The sample size is
The degrees of freedom is,
From Table A.5 of the t-distribution in Appendix A, the critical value corresponding to the right tail area 0.025 and 17 degrees of freedom is 2.110.
Thus, the critical value is
The 95% prediction interval is,
Thus, the 95% prediction interval of sale price for a single warehouse of truss height 25 ft is
Interpretation:
For repeated samples, there is 95% confident that the sale price for a single warehouse of truss height 25 ft lies between $45.377 and $51.523.
Comparison:
The 95% prediction interval of sale price for a single warehouse of truss height 25 ft is
Width of the prediction interval:
The width of the 95% prediction interval is,
Thus, the width of the 95% prediction interval is 6.146.
The 95% specified confidence interval for the true mean of all warehouses with 25 ft truss height is
Width of the confidence interval:
The width of the 95% confidence interval is,
Thus, the width of the 95% confidence interval is 1.442.
From, the obtained two widths it is observed that the width of the prediction interval is typically larger than the width of the confidence interval.
Thus, the prediction interval is wider than the confidence interval.
e.
Compare the width of the 95% prediction interval of sale price of ware houses for 25 ft truss height and for 30 ft truss height.
e.

Answer to Problem 69SE
The 95% prediction interval of sale price of ware houses for 30 ft truss height will be wider than the sale price of ware houses for 25 ft truss height.
Explanation of Solution
Calculation:
Here, the regression equation is
From part (c), the truss height is
Here, the observation
The general formula to obtain
For
For
In the two quantities, the only difference is the values of
In general, the value of the quantity
Therefore, the value
Comparison:
Prediction interval:
The general formula for
The prediction interval will be wider for large value of
Here,
Thus, the prediction interval is wider for
Thus, 95% prediction interval of sale price of ware houses for 30 ft truss height will be wider than the sale price of ware houses for 25 ft truss height.
e.
Find the
e.

Answer to Problem 69SE
The
Explanation of Solution
Calculation:
The coefficient of determination (
The general formula to obtain coefficient of variation is,
From the regression output obtained in part (a), the value of coefficient of determination is 0.9631.
Thus, the coefficient of determination is
Correlation coefficient:
Correlation analysis is used to measure the strength of the association between variables. In other words, it can be said that correlation describes the linear association between quantitative variables.
The general formula to calculate correlation coefficient is,
The coefficient of determination is obtained as follows:
The sign of the correlation coefficient depends on the sign of the slope coefficient.
Here,
Since, the sign of the slope coefficient is positive. The correlation coefficient is positive.
Thus, the correlation coefficient is 0.9814.
Interpretation:
The strength of the association between the variables sale price and truss height is 0.9814. that is, 1 unit increase in one variable is associated with 98.14% increase in the value of the other variable.
Want to see more full solutions like this?
Chapter 12 Solutions
WebAssign for Devore's Probability and Statistics for Engineering and the Sciences, 9th Edition [Instant Access], Single-Term
- 4 (MLE of ARCH) Suppose rt follows ARCH(2) with E(rt) = 0, rt = ut, ut = στει, σε where {+} is a sequence of independent and identically distributed (iid) standard normal random variables. With observations r₁,...,, write down the log-likelihood function for the model esti- mation.arrow_forward5 (Moments of GARCH) For the GARCH(2,2) model rt = 0.2+0.25u1+0.05u-2 +0.30% / -1 +0.20% -2, find cov(rt). 0.0035 ut, ut = στει,στ =arrow_forwardDefinition of null hypothesis from the textbook Definition of alternative hypothesis from the textbook Imagine this: you suspect your beloved Chicken McNugget is shrinking. Inflation is hitting everything else, so why not the humble nugget too, right? But your sibling thinks you’re just being dramatic—maybe you’re just extra hungry today. Determined to prove them wrong, you take matters (and nuggets) into your own hands. You march into McDonald’s, get two 20-piece boxes, and head home like a scientist on a mission. Now, before you start weighing each nugget like they’re precious gold nuggets, let’s talk hypotheses. The average weight of nuggets as mentioned on the box is 16 g each. Develop your null and alternative hypotheses separately. Next, you weigh each nugget with the precision of a jeweler and find they average out to 15.5 grams. You also conduct a statistical analysis, and the p-value turns out to be 0.01. Based on this information, answer the following questions. (Remember,…arrow_forward
- Business Discussarrow_forwardCape Fear Community Colle X ALEKS ALEKS - Dorothy Smith - Sec X www-awu.aleks.com/alekscgi/x/Isl.exe/10_u-IgNslkr7j8P3jH-IQ1w4xc5zw7yX8A9Q43nt5P1XWJWARE... Section 7.1,7.2,7.3 HW 三 Question 21 of 28 (1 point) | Question Attempt: 5 of Unlimited The proportion of phones that have more than 47 apps is 0.8783 Part: 1 / 2 Part 2 of 2 (b) Find the 70th The 70th percentile of the number of apps. Round the answer to two decimal places. percentile of the number of apps is Try again Skip Part Recheck Save 2025 Mcarrow_forwardHi, I need to sort out where I went wrong. So, please us the data attached and run four separate regressions, each using the Recruiters rating as the dependent variable and GMAT, Accept Rate, Salary, and Enrollment, respectively, as a single independent variable. Interpret this equation. Round your answers to four decimal places, if necessary. If your answer is negative number, enter "minus" sign. Equation for GMAT: Ŷ = _______ + _______ GMAT Equation for Accept Rate: Ŷ = _______ + _______ Accept Rate Equation for Salary: Ŷ = _______ + _______ Salary Equation for Enrollment: Ŷ = _______ + _______ Enrollmentarrow_forward
- Question 21 of 28 (1 point) | Question Attempt: 5 of Unlimited Dorothy ✔ ✓ 12 ✓ 13 ✓ 14 ✓ 15 ✓ 16 ✓ 17 ✓ 18 ✓ 19 ✓ 20 = 21 22 > How many apps? According to a website, the mean number of apps on a smartphone in the United States is 82. Assume the number of apps is normally distributed with mean 82 and standard deviation 30. Part 1 of 2 (a) What proportion of phones have more than 47 apps? Round the answer to four decimal places. The proportion of phones that have more than 47 apps is 0.8783 Part: 1/2 Try again kip Part ی E Recheck == == @ W D 80 F3 151 E R C レ Q FA 975 % T B F5 10 の 000 园 Save For Later Submit Assignment © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility Y V& U H J N * 8 M I K O V F10 P = F11 F12 . darrow_forwardYou are provided with data that includes all 50 states of the United States. Your task is to draw a sample of: 20 States using Random Sampling (2 points: 1 for random number generation; 1 for random sample) 10 States using Systematic Sampling (4 points: 1 for random numbers generation; 1 for generating random sample different from the previous answer; 1 for correct K value calculation table; 1 for correct sample drawn by using systematic sampling) (For systematic sampling, do not use the original data directly. Instead, first randomize the data, and then use the randomized dataset to draw your sample. Furthermore, do not use the random list previously generated, instead, generate a new random sample for this part. For more details, please see the snapshot provided at the end.) You are provided with data that includes all 50 states of the United States. Your task is to draw a sample of: o 20 States using Random Sampling (2 points: 1 for random number generation; 1 for random sample) o…arrow_forwardCourse Home ✓ Do Homework - Practice Ques ✓ My Uploads | bartleby + mylab.pearson.com/Student/PlayerHomework.aspx?homeworkId=688589738&questionId=5&flushed=false&cid=8110079¢erwin=yes Online SP 2025 STA 2023-009 Yin = Homework: Practice Questions Exam 3 Question list * Question 3 * Question 4 ○ Question 5 K Concluir atualização: Ava Pearl 04/02/25 9:28 AM HW Score: 71.11%, 12.09 of 17 points ○ Points: 0 of 1 Save Listed in the accompanying table are weights (kg) of randomly selected U.S. Army male personnel measured in 1988 (from "ANSUR I 1988") and different weights (kg) of randomly selected U.S. Army male personnel measured in 2012 (from "ANSUR II 2012"). Assume that the two samples are independent simple random samples selected from normally distributed populations. Do not assume that the population standard deviations are equal. Complete parts (a) and (b). Click the icon to view the ANSUR data. a. Use a 0.05 significance level to test the claim that the mean weight of the 1988…arrow_forward
- solving problem 1arrow_forwardselect bmw stock. you can assume the price of the stockarrow_forwardThis problem is based on the fundamental option pricing formula for the continuous-time model developed in class, namely the value at time 0 of an option with maturity T and payoff F is given by: We consider the two options below: Fo= -rT = e Eq[F]. 1 A. An option with which you must buy a share of stock at expiration T = 1 for strike price K = So. B. An option with which you must buy a share of stock at expiration T = 1 for strike price K given by T K = T St dt. (Note that both options can have negative payoffs.) We use the continuous-time Black- Scholes model to price these options. Assume that the interest rate on the money market is r. (a) Using the fundamental option pricing formula, find the price of option A. (Hint: use the martingale properties developed in the lectures for the stock price process in order to calculate the expectations.) (b) Using the fundamental option pricing formula, find the price of option B. (c) Assuming the interest rate is very small (r ~0), use Taylor…arrow_forward
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell





