At 500 K in the presence of a copper surface, ethanol decomposes according to the equation C 2 H 5 OH ( g ) → CH 3 CHO ( g ) + H 2 ( g ) The pressure of C 2 H 5 OH was measured as a function of time and the following data were obtained: Time(s) P C 2 H 5 OH ( torr ) 0 250. 100. 237 200. 224 300. 211 400. 198 500. 185 Since the pressure of a gas is directly proportional to the concentration of gas, we can express the rate law for a gaseous reaction in terms of partial pressures. Using the above data, deduce the rate law, the integrated rate law, and the value of the rate constant, all in terms of pressure units in atm and time in seconds. Predict the pressure of C 2 H 5 OH after 900. s from the start of the reaction. ( Hint: To determine the order of the reaction with respect to C 2 H 5 OH, compare how the pressure of C 2 H 5 OH decreases with each time listing.)
At 500 K in the presence of a copper surface, ethanol decomposes according to the equation C 2 H 5 OH ( g ) → CH 3 CHO ( g ) + H 2 ( g ) The pressure of C 2 H 5 OH was measured as a function of time and the following data were obtained: Time(s) P C 2 H 5 OH ( torr ) 0 250. 100. 237 200. 224 300. 211 400. 198 500. 185 Since the pressure of a gas is directly proportional to the concentration of gas, we can express the rate law for a gaseous reaction in terms of partial pressures. Using the above data, deduce the rate law, the integrated rate law, and the value of the rate constant, all in terms of pressure units in atm and time in seconds. Predict the pressure of C 2 H 5 OH after 900. s from the start of the reaction. ( Hint: To determine the order of the reaction with respect to C 2 H 5 OH, compare how the pressure of C 2 H 5 OH decreases with each time listing.)
Solution Summary: The author explains how the differential rate law provides the rate of a reaction at specific reaction concentrations.
At 500 K in the presence of a copper surface, ethanol decomposes according to the equation
C
2
H
5
OH
(
g
)
→
CH
3
CHO
(
g
)
+
H
2
(
g
)
The pressure of C2H5OH was measured as a function of time and the following data were obtained:
Time(s)
P
C
2
H
5
OH
(
torr
)
0
250.
100.
237
200.
224
300.
211
400.
198
500.
185
Since the pressure of a gas is directly proportional to the concentration of gas, we can express the rate law for a gaseous reaction in terms of partial pressures. Using the above data, deduce the rate law, the integrated rate law, and the value of the rate constant, all in terms of pressure units in atm and time in seconds. Predict the pressure of C2H5OH after 900. s from the start of the reaction. (Hint: To determine the order of the reaction with respect to C2H5OH, compare how the pressure of C2H5OH decreases with each time listing.)
For which element is the 3d subshell higher in energy than that 4s subshell?
Group of answer choices
Zr
Ca
V
Ni
ii) Molecular ion peak
:the peak corresponding to the intact molecule (with a positive charge)
What would the base peak and Molecular ion peaks when isobutane is subjected
to Mass spectrometry? Draw the structures and write the molecular weights of
the fragments.
Circle most stable cation
a) tert-butyl cation
b) Isopropyl cation c) Ethyl cation. d) Methyl cation
6. What does a loss of 15 represent in Mass spectrum?
a fragment of the molecule with a mass of 15 atomic mass units has been lost during
the ionization Process
7. Write the isotopes and their % abundance of isotopes of
i) Cl
Choose a number and match the atomic number to your element on the periodic table. For your element, write each of these features on a side of your figure.
1. Element Name and symbol
2. Family and group
3. What is it used for?
4. Sketch the Valence electron orbital
5. What ions formed. What is it's block on the periodic table.
6. Common compounds
7. Atomic number
8. Mass number
9. Number of neutrons- (show calculations)
10. Sketch the spectral display of the element
11.Properties
12. Electron configuration
13. Submit a video of a 3-meter toss in slow-mo
Chapter 12 Solutions
WebAssign for Zumdahl/Zumdahl/DeCoste's Chemistry, 10th Edition [Instant Access], Single-Term
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.