
Concept explainers
Consider the following very simple model of blood cholesterol levels based on the fact that cholesterol is manufactured by the body for use in the construction of cell walls and is absorbed from foods containing cholesterol: Let C(t)be the amount (in milligrams per deciliter) of cholesterol in the blood of a particular person at time t(in days). Then
where
N = the person’s natural cholesterol level.
k1= production parameter.
E = daily rate at which cholesterol is eaten, and
k2= absorption parameter.
(a) Suppose N = 200,k1= 0.1,k2= 0.1,E = 400, and C(0)= 150. What will the person’s cholesterol level be after 2 days on this diet?
(b) With the initial conditions as above, what will the person’s cholesterol level be after 5 days on this diet?
(c) What will the person’s cholesterol level be after a long time on this diet?
(d) High levels of cholesterol in the blood are known to be a risk factor for heart disease. Suppose that, after a long time on the high cholesterol diet described above, the person goes on a very low cholesterol diet, so E changes to E = 100. (The initial cholesterol level at the starting time of this diet is the result of part (c).) What will the person’s cholesterol level be after 1 day on the new diet, after 5days on the new diet, and after a very long time on the new diet?
(e) Suppose the person stays on the high cholesterol diet but takes drugs that block some of the uptake of cholesterol from food, so k2changes to k2= 0.075. With the cholesterol level from part (c), what will the person’s cholesterol level be after 1 day, after 5 days, and after a very long time?

Trending nowThis is a popular solution!

Chapter 1 Solutions
DIFFERENTIAL EQUATIONS-ACCESS
- WHAT IS THE SOLUTION?arrow_forwardAnswer questions 2arrow_forwardThe following ordered data list shows the data speeds for cell phones used by a telephone company at an airport: A. Calculate the Measures of Central Tendency from the ungrouped data list. B. Group the data in an appropriate frequency table. C. Calculate the Measures of Central Tendency using the table in point B. 0.8 1.4 1.8 1.9 3.2 3.6 4.5 4.5 4.6 6.2 6.5 7.7 7.9 9.9 10.2 10.3 10.9 11.1 11.1 11.6 11.8 12.0 13.1 13.5 13.7 14.1 14.2 14.7 15.0 15.1 15.5 15.8 16.0 17.5 18.2 20.2 21.1 21.5 22.2 22.4 23.1 24.5 25.7 28.5 34.6 38.5 43.0 55.6 71.3 77.8arrow_forward
- How does a fourier transform works?arrow_forwardProve that (1) Σσς (α) μ(η/α) = n d/n (ii) Σσς(d) = η Σσο(α)/d d❘n d❘n (iii) σ (d) σ (n/d) = Σ d³oo(d) σo(n/d). d|n dnarrow_forwardII Consider the following data matrix X: X1 X2 0.5 0.4 0.2 0.5 0.5 0.5 10.3 10 10.1 10.4 10.1 10.5 What will the resulting clusters be when using the k-Means method with k = 2. In your own words, explain why this result is indeed expected, i.e. why this clustering minimises the ESS map.arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning




