
Concept explainers
In testing an automobile tire for proper alignment, a technician marks a spot on the tire 0.200 m from the center. He then mounts the tire in a vertical plane and notes that the radius vector to the spot is at an angle of 35.0° with the horizontal. Starting from rest, the tire is spun rapidly with a constant
(a)

The angular speed of the wheel after
Answer to Problem 35PQ
The angular speed of the wheel after
Explanation of Solution
Write the expression for the angular velocity of the wheel.
Here,
Conclusion:
Substitute
Therefore, the angular speed of the wheel after
(b)

The tangential speed of the spot after
Answer to Problem 35PQ
The tangential speed of the spot after
Explanation of Solution
Write the relation connecting the tangential speed and the angular speed.
Here,
Conclusion:
Substitute
Therefore, the tangential speed of the spot after
(c)

The magnitude of the total acceleration of the spot after
Answer to Problem 35PQ
The magnitude of the total acceleration of the spot after
Explanation of Solution
Write the expression for the magnitude of the total acceleration.
Here,
The magnitude of the inward radial acceleration equals the centripetal acceleration so that,
Write the expression for the centripetal acceleration.
Use equation (II) in equation (IV),
The tangential acceleration equals the angular acceleration times the radius of the orbit.
Here,
Conclusion:
Substitute
Substitute
Substitute
Therefore, the magnitude of the total acceleration of the spot after
(d)

The angular position of the spot after
Answer to Problem 35PQ
The angular position of the spot is
Explanation of Solution
Write the expression for the angular position after a time
Here,
Conclusion:
Substitute
Therefore, the angular position of the spot is
Want to see more full solutions like this?
Chapter 12 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- please answer this asap!!!!arrow_forwardRT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forward
- ганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forwardA small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





