MYLAB MATH W/PEARSON ETEXT 18 WEEK CODE
4th Edition
ISBN: 9780135910993
Author: Hass
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 1.2, Problem 35E
To determine
Find the number of units of the given equation is to be shifted.
Find the direction of the given equation is to be shifted.
Find the equation of shifted graph.
Sketch the original and shifted graph together.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
nd
ave a
ction and
ave an
48. The domain of f
y=f'(x)
x
1
2
(=
x<0
x<0
= f(x)
possible.
Group Activity In Exercises 49 and 50, do the following.
(a) Find the absolute extrema of f and where they occur.
(b) Find any points of inflection.
(c) Sketch a possible graph of f.
49. f is continuous on [0,3] and satisfies the following.
X
0
1
2
3
f
0
2
0
-2
f'
3
0
does not exist
-3
f"
0
-1
does not exist
0
ve
tes where
X
0 < x <1
1< x <2
2
Numerically estimate the value of limx→2+x3−83x−9, rounded correctly to one decimal place.
In the provided table below, you must enter your answers rounded exactly to the correct number of decimals, based on the Numerical Conventions for MATH1044 (see lecture notes 1.3
Actions
page 3). If there are more rows provided in the table than you need, enter NA for those output values in the table that should not be used.
x→2+
x3−83x−9
2.1
2.01
2.001
2.0001
2.00001
2.000001
Find the general solution of the given differential equation.
(1+x)dy/dx - xy = x +x2
Chapter 1 Solutions
MYLAB MATH W/PEARSON ETEXT 18 WEEK CODE
Ch. 1.1 - In Exercise 1–6, find the domain and range of each...Ch. 1.1 - In Exercise 1–6, find the domain and range of each...Ch. 1.1 - In Exercise 16, find the domain and range of each...Ch. 1.1 - In Exercise 1–6, find the domain and range of each...Ch. 1.1 - In Exercise 1–6, find the domain and range of each...Ch. 1.1 - In Exercise 1–6, find the domain and range of each...Ch. 1.1 - Which of the graphs are graphs of functions of x,...Ch. 1.1 - Which of the graphs are graphs of functions of x,...Ch. 1.1 - Finding Formulas for functions Express the area...Ch. 1.1 - Express the side length of a square as a function...
Ch. 1.1 - Express the edge length of a cube as a function of...Ch. 1.1 - A point P in the first quadrant lies on the graph...Ch. 1.1 - Consider the point (x, y) lying on the graph of...Ch. 1.1 - Consider the point (x, y) lying on the graph of ....Ch. 1.1 - Find the natural domain and graph the functions in...Ch. 1.1 - Find the natural domain and graph the functions in...Ch. 1.1 - Find the natural domain and graph the functions in...Ch. 1.1 - Find the natural domain and graph the functions in...Ch. 1.1 - Functions and Graphs
Find the natural domain and...Ch. 1.1 - Functions and Graphs
Find the natural domain and...Ch. 1.1 - Find the domain of .
Ch. 1.1 - Find the range of .
Ch. 1.1 - Graph the following equations and explain why they...Ch. 1.1 - Graph the following equations and explain why they...Ch. 1.1 - Graph the functions in Exercise.
Ch. 1.1 - Piecewise-Defined Functions
Graph the functions in...Ch. 1.1 - Prob. 27ECh. 1.1 - Piecewise-Defined Functions
Graph the functions in...Ch. 1.1 - Find a formula for each function graphed in...Ch. 1.1 - Prob. 30ECh. 1.1 - Find a formula for each function graphed in...Ch. 1.1 - Find a formula for each function graphed in...Ch. 1.1 - For what values of x is
Ch. 1.1 - Prob. 34ECh. 1.1 - Does for all real x? Give reasons for your...Ch. 1.1 - Graph the function
Why is f(x) called the integer...Ch. 1.1 - Prob. 37ECh. 1.1 - Graph the functions in Exercise. What symmetries,...Ch. 1.1 - Prob. 39ECh. 1.1 - Prob. 40ECh. 1.1 - Prob. 41ECh. 1.1 - Prob. 42ECh. 1.1 - Prob. 43ECh. 1.1 - Graph the functions in Exercise. What symmetries,...Ch. 1.1 - Graph the functions in Exercise. What symmetries,...Ch. 1.1 - Prob. 46ECh. 1.1 - Prob. 47ECh. 1.1 - Prob. 48ECh. 1.1 - Prob. 49ECh. 1.1 - Prob. 50ECh. 1.1 - Prob. 51ECh. 1.1 - Prob. 52ECh. 1.1 - Prob. 53ECh. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - Prob. 55ECh. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - Prob. 58ECh. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - Prob. 60ECh. 1.1 - Prob. 61ECh. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - Prob. 63ECh. 1.1 - Prob. 64ECh. 1.1 - The variables r and s are inversely proportional,...Ch. 1.1 - Boyle’s Law Boyle’s Law says that the volume V of...Ch. 1.1 - Prob. 67ECh. 1.1 - The accompanying figure shows a rectangle...Ch. 1.1 - In Exercises 69 and 70, match each equation with...Ch. 1.1 - y = 5x
y = 5x
y = x5
Ch. 1.1 - Graph the functions f(x) = x/2 and g(x) = 1 +...Ch. 1.1 - Graph the functions f(x) = 3/(x − 1) and g(x) =...Ch. 1.1 - Prob. 73ECh. 1.1 - Prob. 74ECh. 1.1 - Prob. 75ECh. 1.1 - Industrial costs A power plant sits next to a...Ch. 1.2 - In Exercises 1 and 2, find the domains of f, g, f...Ch. 1.2 - Prob. 2ECh. 1.2 - Prob. 3ECh. 1.2 - Prob. 4ECh. 1.2 - If f(x) = x + 5 and g(x) = x2 − 3, find the...Ch. 1.2 - If f(x) = x − 1 and g(x) = 1/(x + 1), find the...Ch. 1.2 - Prob. 7ECh. 1.2 - In Exercises 7–10, write a formula for .
8.
Ch. 1.2 - Prob. 9ECh. 1.2 - Prob. 10ECh. 1.2 - Let f(x) = x – 3, , h(x) = x3and j(x) = 2x....Ch. 1.2 - Let f(x) = x – 3, , h(x) = x3and j(x) = 2x....Ch. 1.2 - Copy and complete the following table.
Ch. 1.2 - Copy and complete the following table.
Ch. 1.2 - Prob. 15ECh. 1.2 - Prob. 16ECh. 1.2 - Prob. 17ECh. 1.2 - Prob. 18ECh. 1.2 - Prob. 19ECh. 1.2 - Prob. 20ECh. 1.2 - Prob. 21ECh. 1.2 - Prob. 22ECh. 1.2 - The accompanying figure shows the graph of y = –x2...Ch. 1.2 - The accompanying figure shows the graph of y = x2...Ch. 1.2 - Prob. 25ECh. 1.2 - Prob. 26ECh. 1.2 - Prob. 27ECh. 1.2 - Prob. 28ECh. 1.2 - Prob. 29ECh. 1.2 - Prob. 30ECh. 1.2 - Prob. 31ECh. 1.2 - Prob. 32ECh. 1.2 - Prob. 33ECh. 1.2 - Prob. 34ECh. 1.2 - Prob. 35ECh. 1.2 - Prob. 36ECh. 1.2 - Prob. 37ECh. 1.2 - Prob. 38ECh. 1.2 - Prob. 39ECh. 1.2 - Prob. 40ECh. 1.2 - Prob. 41ECh. 1.2 - Prob. 42ECh. 1.2 - Prob. 43ECh. 1.2 - Prob. 44ECh. 1.2 - Prob. 45ECh. 1.2 - Prob. 46ECh. 1.2 - Prob. 47ECh. 1.2 - Prob. 48ECh. 1.2 - Prob. 49ECh. 1.2 - Prob. 50ECh. 1.2 - Prob. 51ECh. 1.2 - Prob. 52ECh. 1.2 - Prob. 53ECh. 1.2 - Prob. 54ECh. 1.2 - Prob. 55ECh. 1.2 - Prob. 56ECh. 1.2 - Prob. 57ECh. 1.2 - Prob. 58ECh. 1.2 - Prob. 59ECh. 1.2 - Prob. 60ECh. 1.2 - Prob. 61ECh. 1.2 - Prob. 62ECh. 1.2 - Prob. 63ECh. 1.2 - Prob. 64ECh. 1.2 - Prob. 65ECh. 1.2 - Prob. 66ECh. 1.2 - Prob. 67ECh. 1.2 - Prob. 68ECh. 1.2 - Graphing
In Exercises 69–76, graph each function...Ch. 1.2 - Prob. 70ECh. 1.2 - Prob. 71ECh. 1.2 - Prob. 72ECh. 1.2 - Prob. 73ECh. 1.2 - Prob. 74ECh. 1.2 - Prob. 75ECh. 1.2 - Prob. 76ECh. 1.2 - Prob. 77ECh. 1.2 - Prob. 78ECh. 1.2 - Prob. 79ECh. 1.2 - Prob. 80ECh. 1.2 - Prob. 81ECh. 1.2 - Prob. 82ECh. 1.3 - On a circle of radius 10 m, how long is an arc...Ch. 1.3 - Prob. 2ECh. 1.3 - Prob. 3ECh. 1.3 - Prob. 4ECh. 1.3 - Copy and complete the following table of function...Ch. 1.3 - Prob. 6ECh. 1.3 - Prob. 7ECh. 1.3 - Prob. 8ECh. 1.3 - Prob. 9ECh. 1.3 - Prob. 10ECh. 1.3 - Prob. 11ECh. 1.3 - Prob. 12ECh. 1.3 - Graph the functions in Exercises 13–22. What is...Ch. 1.3 - Graph the functions in Exercises 13–22. What is...Ch. 1.3 - Graph the functions in Exercises 13–22. What is...Ch. 1.3 - Graph the functions in Exercises 13–22. What is...Ch. 1.3 - Graph the functions in Exercises 13–22. What is...Ch. 1.3 - Prob. 18ECh. 1.3 - Graph the functions in Exercises 13–22. What is...Ch. 1.3 - Prob. 20ECh. 1.3 - Graph the functions in Exercises 13–22. What is...Ch. 1.3 - Prob. 22ECh. 1.3 - Prob. 23ECh. 1.3 - Prob. 24ECh. 1.3 - Prob. 25ECh. 1.3 - Prob. 26ECh. 1.3 - Graph y = cos x and y = sec x together for ....Ch. 1.3 - Prob. 28ECh. 1.3 - Prob. 29ECh. 1.3 - Prob. 30ECh. 1.3 - Prob. 31ECh. 1.3 - Prob. 32ECh. 1.3 - Prob. 33ECh. 1.3 - Prob. 34ECh. 1.3 - Prob. 35ECh. 1.3 - Prob. 36ECh. 1.3 - Prob. 37ECh. 1.3 - Prob. 38ECh. 1.3 - Prob. 39ECh. 1.3 - Prob. 40ECh. 1.3 - Prob. 41ECh. 1.3 - Prob. 42ECh. 1.3 - Prob. 43ECh. 1.3 - Prob. 44ECh. 1.3 - Prob. 45ECh. 1.3 - Prob. 46ECh. 1.3 - Using the Half-Angle Formulas
Find the function...Ch. 1.3 - Using the Half-Angle Formulas
Find the function...Ch. 1.3 - Using the Half-Angle Formulas
Find the function...Ch. 1.3 - Prob. 50ECh. 1.3 - Solving Trigonometric Equations For Exercise 5154,...Ch. 1.3 - Prob. 52ECh. 1.3 - Prob. 53ECh. 1.3 - Prob. 54ECh. 1.3 - Prob. 55ECh. 1.3 - Prob. 56ECh. 1.3 - Apply the law of cosines to the triangle in the...Ch. 1.3 - Prob. 58ECh. 1.3 - Prob. 59ECh. 1.3 - Prob. 60ECh. 1.3 - The law of sines The law of sines says that if a,...Ch. 1.3 - Prob. 62ECh. 1.3 - Prob. 63ECh. 1.3 - Prob. 64ECh. 1.3 - Prob. 65ECh. 1.3 - Prob. 66ECh. 1.3 - Prob. 67ECh. 1.3 - General Sine Curves
For
identify A, B, C, and D...Ch. 1.3 - Prob. 69ECh. 1.3 - Prob. 70ECh. 1.4 - Prob. 1ECh. 1.4 - Prob. 2ECh. 1.4 - Prob. 3ECh. 1.4 - Prob. 4ECh. 1.4 - Prob. 5ECh. 1.4 - Prob. 6ECh. 1.4 - Prob. 7ECh. 1.4 - Prob. 8ECh. 1.4 - Prob. 9ECh. 1.4 - Prob. 10ECh. 1.4 - Prob. 11ECh. 1.4 - Prob. 12ECh. 1.4 - Prob. 13ECh. 1.4 - Prob. 14ECh. 1.4 - Prob. 15ECh. 1.4 - Prob. 16ECh. 1.4 - Prob. 17ECh. 1.4 - Prob. 18ECh. 1.4 - Prob. 19ECh. 1.4 - Prob. 20ECh. 1.4 - Prob. 21ECh. 1.4 - Prob. 22ECh. 1.4 - Prob. 23ECh. 1.4 - Prob. 24ECh. 1.4 - Prob. 25ECh. 1.4 - Prob. 26ECh. 1.4 - Prob. 27ECh. 1.4 - Prob. 28ECh. 1.4 - Prob. 29ECh. 1.4 - Prob. 30ECh. 1.4 - Prob. 31ECh. 1.4 - Prob. 32ECh. 1.4 - Prob. 33ECh. 1.4 - Prob. 34ECh. 1.4 - Prob. 35ECh. 1.4 - Prob. 36ECh. 1.5 - In Exercises 1–6, sketch the given curves together...Ch. 1.5 - Prob. 2ECh. 1.5 - In Exercises 1–6, sketch the given curves together...Ch. 1.5 - Prob. 4ECh. 1.5 - Prob. 5ECh. 1.5 - Prob. 6ECh. 1.5 - Prob. 7ECh. 1.5 - Prob. 8ECh. 1.5 - Prob. 9ECh. 1.5 - Prob. 10ECh. 1.5 - Prob. 11ECh. 1.5 - Prob. 12ECh. 1.5 - Prob. 13ECh. 1.5 - Prob. 14ECh. 1.5 - Prob. 15ECh. 1.5 - Prob. 16ECh. 1.5 - Prob. 17ECh. 1.5 - Prob. 18ECh. 1.5 - Prob. 19ECh. 1.5 - Prob. 20ECh. 1.5 - Prob. 21ECh. 1.5 - Prob. 22ECh. 1.5 - Prob. 23ECh. 1.5 - Prob. 24ECh. 1.5 - Prob. 25ECh. 1.5 - Prob. 26ECh. 1.5 - Prob. 27ECh. 1.5 - Prob. 28ECh. 1.5 - Prob. 29ECh. 1.5 - Prob. 30ECh. 1.5 - Prob. 31ECh. 1.5 - Prob. 32ECh. 1.5 - Prob. 33ECh. 1.5 - Prob. 34ECh. 1.5 - Prob. 35ECh. 1.5 - Prob. 36ECh. 1.6 - Prob. 1ECh. 1.6 - Prob. 2ECh. 1.6 - Prob. 3ECh. 1.6 - Prob. 4ECh. 1.6 - Prob. 5ECh. 1.6 - Prob. 6ECh. 1.6 - Prob. 7ECh. 1.6 - Prob. 8ECh. 1.6 - Prob. 9ECh. 1.6 - Prob. 10ECh. 1.6 - Prob. 11ECh. 1.6 - Prob. 12ECh. 1.6 - Prob. 13ECh. 1.6 - Prob. 14ECh. 1.6 - Prob. 15ECh. 1.6 - Prob. 16ECh. 1.6 - Prob. 17ECh. 1.6 - Prob. 18ECh. 1.6 - Prob. 19ECh. 1.6 - Prob. 20ECh. 1.6 - Prob. 21ECh. 1.6 - Prob. 22ECh. 1.6 - Prob. 23ECh. 1.6 - Prob. 24ECh. 1.6 - Prob. 25ECh. 1.6 - Prob. 26ECh. 1.6 - Prob. 27ECh. 1.6 - Prob. 28ECh. 1.6 - Prob. 29ECh. 1.6 - Prob. 30ECh. 1.6 - Prob. 31ECh. 1.6 - Prob. 32ECh. 1.6 - Prob. 33ECh. 1.6 - Prob. 34ECh. 1.6 - Prob. 35ECh. 1.6 - Prob. 36ECh. 1.6 - Prob. 37ECh. 1.6 - Prob. 38ECh. 1.6 - Prob. 39ECh. 1.6 - Prob. 40ECh. 1.6 - Prob. 41ECh. 1.6 - Prob. 42ECh. 1.6 - Prob. 43ECh. 1.6 - Prob. 44ECh. 1.6 - Prob. 45ECh. 1.6 - Prob. 46ECh. 1.6 - Prob. 47ECh. 1.6 - Prob. 48ECh. 1.6 - Prob. 49ECh. 1.6 - Prob. 50ECh. 1.6 - Prob. 51ECh. 1.6 - Prob. 52ECh. 1.6 - Prob. 53ECh. 1.6 - Prob. 54ECh. 1.6 - Prob. 55ECh. 1.6 - Prob. 56ECh. 1.6 - Prob. 57ECh. 1.6 - In Exercises 57–64, solve for t.
58.
e−0.01t =...Ch. 1.6 - Prob. 59ECh. 1.6 - Prob. 60ECh. 1.6 - Prob. 61ECh. 1.6 - Prob. 62ECh. 1.6 - Prob. 63ECh. 1.6 - Prob. 64ECh. 1.6 - Prob. 65ECh. 1.6 - Prob. 66ECh. 1.6 - Prob. 67ECh. 1.6 - Prob. 68ECh. 1.6 - Prob. 69ECh. 1.6 - Prob. 70ECh. 1.6 - Prob. 71ECh. 1.6 - Prob. 72ECh. 1.6 - Find the exact value of each expression. Remember...Ch. 1.6 - Prob. 74ECh. 1.6 - Prob. 75ECh. 1.6 - Prob. 76ECh. 1.6 - Prob. 77ECh. 1.6 - Prob. 78ECh. 1.6 - Prob. 79ECh. 1.6 - Prob. 80ECh. 1.6 - Prob. 81ECh. 1.6 - Prob. 82ECh. 1.6 - Prob. 83ECh. 1.6 - Prob. 84ECh. 1.6 - Radioactive decay The half-life of a certain...Ch. 1.6 - Prob. 86ECh. 1.6 - Prob. 87ECh. 1.6 - Prob. 88E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Estimate the instantaneous rate of change of the function f(x) = 2x² - 3x − 4 at x = -2 using the average rate of change over successively smaller intervals.arrow_forwardGiven the graph of f(x) below. Determine the average rate of change of f(x) from x = 1 to x = 6. Give your answer as a simplified fraction if necessary. For example, if you found that msec = 1, you would enter 1. 3' −2] 3 -5 -6 2 3 4 5 6 7 Ꮖarrow_forwardGiven the graph of f(x) below. Determine the average rate of change of f(x) from x = -2 to x = 2. Give your answer as a simplified fraction if necessary. For example, if you found that msec = , you would enter 3 2 2 3 X 23arrow_forward
- A function is defined on the interval (-π/2,π/2) by this multipart rule: if -π/2 < x < 0 f(x) = a if x=0 31-tan x +31-cot x if 0 < x < π/2 Here, a and b are constants. Find a and b so that the function f(x) is continuous at x=0. a= b= 3arrow_forwardUse the definition of continuity and the properties of limits to show that the function is continuous at the given number a. f(x) = (x + 4x4) 5, a = -1 lim f(x) X--1 = lim x+4x X--1 lim X-1 4 x+4x 5 ))" 5 )) by the power law by the sum law lim (x) + lim X--1 4 4x X-1 -(0,00+( Find f(-1). f(-1)=243 lim (x) + -1 +4 35 4 ([ ) lim (x4) 5 x-1 Thus, by the definition of continuity, f is continuous at a = -1. by the multiple constant law by the direct substitution propertyarrow_forward1. Compute Lo F⚫dr, where and C is defined by F(x, y) = (x² + y)i + (y − x)j r(t) = (12t)i + (1 − 4t + 4t²)j from the point (1, 1) to the origin.arrow_forward
- 2. Consider the vector force: F(x, y, z) = 2xye²i + (x²e² + y)j + (x²ye² — z)k. (A) [80%] Show that F satisfies the conditions for a conservative vector field, and find a potential function (x, y, z) for F. Remark: To find o, you must use the method explained in the lecture. (B) [20%] Use the Fundamental Theorem for Line Integrals to compute the work done by F on an object moves along any path from (0,1,2) to (2, 1, -8).arrow_forwardhelp pleasearrow_forwardIn each of Problems 1 through 4, draw a direction field for the given differential equation. Based on the direction field, determine the behavior of y as t → ∞. If this behavior depends on the initial value of y at t = 0, describe the dependency.1. y′ = 3 − 2yarrow_forward
- B 2- The figure gives four points and some corresponding rays in the xy-plane. Which of the following is true? A B Angle COB is in standard position with initial ray OB and terminal ray OC. Angle COB is in standard position with initial ray OC and terminal ray OB. C Angle DOB is in standard position with initial ray OB and terminal ray OD. D Angle DOB is in standard position with initial ray OD and terminal ray OB.arrow_forwardtemperature in degrees Fahrenheit, n hours since midnight. 5. The temperature was recorded at several times during the day. Function T gives the Here is a graph for this function. To 29uis a. Describe the overall trend of temperature throughout the day. temperature (Fahrenheit) 40 50 50 60 60 70 5 10 15 20 25 time of day b. Based on the graph, did the temperature change more quickly between 10:00 a.m. and noon, or between 8:00 p.m. and 10:00 p.m.? Explain how you know. (From Unit 4, Lesson 7.) 6. Explain why this graph does not represent a function. (From Unit 4, Lesson 8.)arrow_forwardFind the area of the shaded region. (a) 5- y 3 2- (1,4) (5,0) 1 3 4 5 6 (b) 3 y 2 Decide whether the problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution. STEP 1: Consider the figure in part (a). Since this region is simply a triangle, you may use precalculus methods to solve this part of the problem. First determine the height of the triangle and the length of the triangle's base. height 4 units units base 5 STEP 2: Compute the area of the triangle by employing a formula from precalculus, thus finding the area of the shaded region in part (a). 10 square units STEP 3: Consider the figure in part (b). Since this region is defined by a complicated curve, the problem seems to require calculus. Find an approximation of the shaded region by using a graphical approach. (Hint: Treat the shaded regi as…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Polar Coordinates Basic Introduction, Conversion to Rectangular, How to Plot Points, Negative R Valu; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=aSdaT62ndYE;License: Standard YouTube License, CC-BY