
Thomas' Calculus (14th Edition)
14th Edition
ISBN: 9780134438986
Author: Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1.2, Problem 30E
To determine
Find the number of units of the given equation is to be shifted.
Find the direction of the given equation is to be shifted.
Find the equation of shifted graph.
Sketch the original and shifted graph together.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
2. Suppose a LC circuit has the following differential equation:
q'+4q=6etcos 4t, q(0) = 1
a. Find the function for q(t), use any method that we have studied in the course.
b. What is the transient and the steady-state of the circuit?
5. Use variation of parameters to find the general solution to the differential equation:
y" - 6y' + 9y=e3x Inx
Let the region R be the area enclosed by the function f(x) = ln (x) + 2 and g(x) = x. Write an integral in terms of x and also an
integral in terms of y that would represent the area of the region R. If necessary, round limit values to the nearest thousandth.
5
4
3
2
1
y
x
1
2
3
4
Chapter 1 Solutions
Thomas' Calculus (14th Edition)
Ch. 1.1 - In Exercise 1–6, find the domain and range of each...Ch. 1.1 - In Exercise 1–6, find the domain and range of each...Ch. 1.1 - In Exercise 1–6, find the domain and range of each...Ch. 1.1 - In Exercise 1–6, find the domain and range of each...Ch. 1.1 - In Exercise 1–6, find the domain and range of each...Ch. 1.1 - In Exercise 1–6, find the domain and range of each...Ch. 1.1 - Which of the graphs are graphs of functions of x,...Ch. 1.1 - Which of the graphs are graphs of functions of x,...Ch. 1.1 - Prob. 9ECh. 1.1 - Express the side length of a square as a function...
Ch. 1.1 - Express the edge length of a cube as a function of...Ch. 1.1 - A point P in the first quadrant lies on the graph...Ch. 1.1 - Consider the point (x, y) lying on the graph of...Ch. 1.1 - Consider the point (x, y) lying on the graph of ....Ch. 1.1 - Find the natural domain and graph the functions in...Ch. 1.1 - Find the natural domain and graph the functions in...Ch. 1.1 - Find the natural domain and graph the functions in...Ch. 1.1 - Find the natural domain and graph the functions in...Ch. 1.1 - Functions and Graphs
Find the natural domain and...Ch. 1.1 - Functions and Graphs
Find the natural domain and...Ch. 1.1 - Find the domain of .
Ch. 1.1 - Find the range of .
Ch. 1.1 - Graph the following equations and explain why they...Ch. 1.1 - Graph the following equations and explain why they...Ch. 1.1 - Graph the functions in Exercise.
Ch. 1.1 - Piecewise-Defined Functions
Graph the functions in...Ch. 1.1 - Graph the functions in Exercise.
Ch. 1.1 - Piecewise-Defined Functions
Graph the functions in...Ch. 1.1 - Find a formula for each function graphed in...Ch. 1.1 - Find a formula for each function graphed in...Ch. 1.1 - Find a formula for each function graphed in...Ch. 1.1 - Find a formula for each function graphed in...Ch. 1.1 - For what values of x is
Ch. 1.1 - What real numbers x satisfy the equation
Ch. 1.1 - Does for all real x? Give reasons for your...Ch. 1.1 - Graph the function
Why is f(x) called the integer...Ch. 1.1 - Graph the functions in Exercise. What symmetries,...Ch. 1.1 - Graph the functions in Exercise. What symmetries,...Ch. 1.1 - Graph the functions in Exercise. What symmetries,...Ch. 1.1 - Graph the functions in Exercise. What symmetries,...Ch. 1.1 - Graph the functions in Exercise. What symmetries,...Ch. 1.1 - Graph the functions in Exercise. What symmetries,...Ch. 1.1 - Graph the functions in Exercise. What symmetries,...Ch. 1.1 - Graph the functions in Exercise. What symmetries,...Ch. 1.1 - Graph the functions in Exercise. What symmetries,...Ch. 1.1 - Graph the functions in Exercise. What symmetries,...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - The variable s is proportional to t, and s = 25...Ch. 1.1 - Kinetic energy The kinetic energy K of a mass is...Ch. 1.1 - The variables r and s are inversely proportional,...Ch. 1.1 - Boyle’s Law Boyle’s Law says that the volume V of...Ch. 1.1 - A box with an open top is to be constructed from a...Ch. 1.1 - The accompanying figure shows a rectangle...Ch. 1.1 - In Exercises 69 and 70, match each equation with...Ch. 1.1 - y = 5x
y = 5x
y = x5
Ch. 1.1 - Graph the functions f(x) = x/2 and g(x) = 1 +...Ch. 1.1 - Graph the functions f(x) = 3/(x − 1) and g(x) =...Ch. 1.1 - For a curve to be symmetric about the x-axis, the...Ch. 1.1 - Three hundred books sell for $40 each, resulting...Ch. 1.1 - A pen in the shape of an isosceles right triangle...Ch. 1.1 - Industrial costs A power plant sits next to a...Ch. 1.2 - In Exercises 1 and 2, find the domains of f, g, f...Ch. 1.2 - In Exercises 1 and 2, find the domains of f, g, f...Ch. 1.2 - In Exercises 3 and 4, find the domains of f, g,...Ch. 1.2 - In Exercises 3 and 4, find the domains of f, g,...Ch. 1.2 - If f(x) = x + 5 and g(x) = x2 − 3, find the...Ch. 1.2 - If f(x) = x − 1 and g(x) = 1/(x + 1), find the...Ch. 1.2 - Prob. 7ECh. 1.2 - In Exercises 7–10, write a formula for .
8.
Ch. 1.2 - In Exercises 7–10, write a formula for .
9.
Ch. 1.2 - In Exercises 7–10, write a formula for .
10.
Ch. 1.2 - Let f(x) = x – 3, , h(x) = x3and j(x) = 2x....Ch. 1.2 - Prob. 12ECh. 1.2 - Copy and complete the following table.
Ch. 1.2 - Copy and complete the following table.
Ch. 1.2 - Evaluate each expression using the given table...Ch. 1.2 - Prob. 16ECh. 1.2 - In Exercises 17 and 18, (a) write formulas for f ∘...Ch. 1.2 - Prob. 18ECh. 1.2 - 19. Let . Find a function y = g(x) so that
Ch. 1.2 - Prob. 20ECh. 1.2 - A balloon’s volume V is given by V = s2 + 2s + 3...Ch. 1.2 - Use the graphs of f and g to sketch the graph of y...Ch. 1.2 - The accompanying figure shows the graph of y = –x2...Ch. 1.2 - The accompanying figure shows the graph of y = x2...Ch. 1.2 - Match the equations listed in parts (a)–(d) to the...Ch. 1.2 - The accompanying figure shows the graph of y = –x2...Ch. 1.2 - Prob. 27ECh. 1.2 - Prob. 28ECh. 1.2 - Prob. 29ECh. 1.2 - Prob. 30ECh. 1.2 - Prob. 31ECh. 1.2 - Prob. 32ECh. 1.2 - Prob. 33ECh. 1.2 - Exercises 27–36 tell how many units and in what...Ch. 1.2 - Prob. 35ECh. 1.2 - Tell how many units and in what directions the...Ch. 1.2 - Prob. 37ECh. 1.2 - Prob. 38ECh. 1.2 - Prob. 39ECh. 1.2 - Prob. 40ECh. 1.2 - Prob. 41ECh. 1.2 - Prob. 42ECh. 1.2 - Prob. 43ECh. 1.2 - Prob. 44ECh. 1.2 - Prob. 45ECh. 1.2 - Prob. 46ECh. 1.2 - Prob. 47ECh. 1.2 - Prob. 48ECh. 1.2 - Prob. 49ECh. 1.2 - Prob. 50ECh. 1.2 - Prob. 51ECh. 1.2 - Graph the functions in Exercises 37–56.
52.
Ch. 1.2 - Prob. 53ECh. 1.2 - Prob. 54ECh. 1.2 - Prob. 55ECh. 1.2 - Prob. 56ECh. 1.2 - The accompanying figure shows the graph of a...Ch. 1.2 - The accompanying figure shows the graph of a...Ch. 1.2 - Prob. 59ECh. 1.2 - Prob. 60ECh. 1.2 - Vertical and Horizontal Scaling
Exercises 59–68...Ch. 1.2 - Prob. 62ECh. 1.2 - Prob. 63ECh. 1.2 - Prob. 64ECh. 1.2 - Tell in what direction and by what factor the...Ch. 1.2 - Prob. 66ECh. 1.2 - Prob. 67ECh. 1.2 - Prob. 68ECh. 1.2 - Graphing
In Exercises 69–76, graph each function...Ch. 1.2 - Prob. 70ECh. 1.2 - Prob. 71ECh. 1.2 - Graphing
In Exercises 69–76, graph each function...Ch. 1.2 - Prob. 73ECh. 1.2 - Prob. 74ECh. 1.2 - Prob. 75ECh. 1.2 - Graphing
In Exercises 69–76, graph each function...Ch. 1.2 - Prob. 77ECh. 1.2 - Prob. 78ECh. 1.2 - Prob. 79ECh. 1.2 - Prob. 80ECh. 1.2 - Prob. 81ECh. 1.2 - Prob. 82ECh. 1.3 - On a circle of radius 10 m, how long is an arc...Ch. 1.3 - A central angle in a circle of radius 8 is...Ch. 1.3 - You want to make an 80° angle by marking an arc on...Ch. 1.3 - If you roll a 1 -m-diameter wheel forward 30 cm...Ch. 1.3 - Copy and complete the following table of function...Ch. 1.3 - Copy and complete the following table of function...Ch. 1.3 - In Exercises 7–12, one of sin x, cos x, and tan x...Ch. 1.3 - In Exercises 7–12, one of sin x, cos x, and tan x...Ch. 1.3 - In Exercises 7–12, one of sin x, cos x, and tan x...Ch. 1.3 - Prob. 10ECh. 1.3 - Prob. 11ECh. 1.3 - In Exercises 7–12, one of sin x, cos x, and tan x...Ch. 1.3 - Graph the functions in Exercises 13–22. What is...Ch. 1.3 - Graph the functions in Exercises 13–22. What is...Ch. 1.3 - Graph the functions in Exercises 13–22. What is...Ch. 1.3 - Graph the functions in Exercises 13–22. What is...Ch. 1.3 - Prob. 17ECh. 1.3 - Prob. 18ECh. 1.3 - Prob. 19ECh. 1.3 - Prob. 20ECh. 1.3 - Prob. 21ECh. 1.3 - Prob. 22ECh. 1.3 - Prob. 23ECh. 1.3 - Prob. 24ECh. 1.3 - Prob. 25ECh. 1.3 - Prob. 26ECh. 1.3 - Graph y = cos x and y = sec x together for ....Ch. 1.3 - Prob. 28ECh. 1.3 - Prob. 29ECh. 1.3 - Prob. 30ECh. 1.3 - Use the addition formulas to derive the identities...Ch. 1.3 - Use the addition formulas to derive the identities...Ch. 1.3 - Use the addition formulas to derive the identities...Ch. 1.3 - Use the addition formulas to derive the identities...Ch. 1.3 - Use the addition formulas to derive the identities...Ch. 1.3 - Prob. 36ECh. 1.3 - What happens if you take B = A in the...Ch. 1.3 - Prob. 38ECh. 1.3 - In Exercises 39–42, express the given quantity in...Ch. 1.3 - In Exercises 39–42, express the given quantity in...Ch. 1.3 - Prob. 41ECh. 1.3 - Prob. 42ECh. 1.3 - Prob. 43ECh. 1.3 - Evaluate as .
Ch. 1.3 - Prob. 45ECh. 1.3 - Evaluate .
Ch. 1.3 - Using the Half-Angle Formulas
Find the function...Ch. 1.3 - Prob. 48ECh. 1.3 - Prob. 49ECh. 1.3 - Prob. 50ECh. 1.3 - Prob. 51ECh. 1.3 - Prob. 52ECh. 1.3 - Solving Trigonometric Equations
For Exercise...Ch. 1.3 - Solving Trigonometric Equations
For Exercise...Ch. 1.3 - Prob. 55ECh. 1.3 - Prob. 56ECh. 1.3 - Apply the law of cosines to the triangle in the...Ch. 1.3 - Prob. 58ECh. 1.3 - Prob. 59ECh. 1.3 - Prob. 60ECh. 1.3 - The law of sines The law of sines says that if a,...Ch. 1.3 - Prob. 62ECh. 1.3 - A triangle has side c = 2 and angles and .Find...Ch. 1.3 - Consider the length h of the perpendicular from...Ch. 1.3 - Refer to the given figure. Write the radius r of...Ch. 1.3 - Prob. 66ECh. 1.3 - Prob. 67ECh. 1.3 - Prob. 68ECh. 1.3 - Prob. 69ECh. 1.3 - Prob. 70ECh. 1.4 - Choosing a Viewing Window
In Exercises 1–4, use...Ch. 1.4 - Choosing a Viewing Window
In Exercises 1–4, use...Ch. 1.4 - Choosing a Viewing Window
In Exercises 1–4, use...Ch. 1.4 - Prob. 4ECh. 1.4 - Prob. 5ECh. 1.4 - Prob. 6ECh. 1.4 - Prob. 7ECh. 1.4 - Prob. 8ECh. 1.4 - Prob. 9ECh. 1.4 - Prob. 10ECh. 1.4 - Prob. 11ECh. 1.4 - Finding a Viewing Window
In Exercises 5–30, find...Ch. 1.4 - Finding a Viewing Window
In Exercises 5–30, find...Ch. 1.4 - Finding a Viewing Window
In Exercises 5–30, find...Ch. 1.4 - Prob. 15ECh. 1.4 - Prob. 16ECh. 1.4 - Prob. 17ECh. 1.4 - Prob. 18ECh. 1.4 - Prob. 19ECh. 1.4 - Prob. 20ECh. 1.4 - Prob. 21ECh. 1.4 - Finding a Viewing Window
In Exercises 5–30, find...Ch. 1.4 - Prob. 23ECh. 1.4 - Finding a Viewing Window
In Exercises 5–30, find...Ch. 1.4 - Prob. 25ECh. 1.4 - Prob. 26ECh. 1.4 - Prob. 27ECh. 1.4 - Prob. 28ECh. 1.4 - Prob. 29ECh. 1.4 - Prob. 30ECh. 1.4 - Use graphing software to graph the functions...Ch. 1.4 - Prob. 32ECh. 1.4 - Prob. 33ECh. 1.4 - Prob. 34ECh. 1.4 - Prob. 35ECh. 1.4 - Use graphing software to graph the functions...Ch. 1 - Prob. 1GYRCh. 1 - What is the graph of a real-valued function of a...Ch. 1 - What is a piecewise-defined function? Give...Ch. 1 - What are the important types of functions...Ch. 1 - What is meant by an increasing function? A...Ch. 1 - What is an even function? An odd function? What...Ch. 1 - If f and g are real-valued functions, how are the...Ch. 1 - When is it possible to compose one function with...Ch. 1 - How do you change the equation y = f(x) to shift...Ch. 1 - Prob. 10GYRCh. 1 - Prob. 11GYRCh. 1 - Prob. 12GYRCh. 1 - Prob. 13GYRCh. 1 - Prob. 14GYRCh. 1 - Prob. 15GYRCh. 1 - Name three issues that arise when functions are...Ch. 1 - Express the area and circumference of a circle as...Ch. 1 - Prob. 2PECh. 1 - A point P in the first quadrant lies on the...Ch. 1 - Prob. 4PECh. 1 - In Exercises 5–8, determine whether the graph of...Ch. 1 - Prob. 6PECh. 1 - Prob. 7PECh. 1 - Prob. 8PECh. 1 - Prob. 9PECh. 1 - Prob. 10PECh. 1 - Prob. 11PECh. 1 - Prob. 12PECh. 1 - Prob. 13PECh. 1 - Prob. 14PECh. 1 - Prob. 15PECh. 1 - In Exercises 9–16, determine whether the function...Ch. 1 - Prob. 17PECh. 1 - Prob. 18PECh. 1 - In Exercises 19–32, find the (a) domain and (b)...Ch. 1 - Prob. 20PECh. 1 - Prob. 21PECh. 1 - In Exercises 19–32, find the (a) domain and (b)...Ch. 1 - Prob. 23PECh. 1 - Prob. 24PECh. 1 - Prob. 25PECh. 1 - Prob. 26PECh. 1 - Prob. 27PECh. 1 - Prob. 28PECh. 1 - Prob. 29PECh. 1 - Prob. 30PECh. 1 - Prob. 31PECh. 1 - Prob. 32PECh. 1 - State whether each function is increasing,...Ch. 1 - Prob. 34PECh. 1 - Prob. 35PECh. 1 - Prob. 36PECh. 1 - In Exercises 37 and 38, write a piecewise formula...Ch. 1 - In Exercises 37 and 38, write a piecewise formula...Ch. 1 - Prob. 39PECh. 1 - Prob. 40PECh. 1 - In Exercises 41 and 42, (a) write formulas for f ∘...Ch. 1 - Prob. 42PECh. 1 - For Exercises 43 and 44, sketch the graphs of f...Ch. 1 - Prob. 44PECh. 1 - Prob. 45PECh. 1 - Prob. 46PECh. 1 - Prob. 47PECh. 1 - Prob. 48PECh. 1 - Prob. 49PECh. 1 - Prob. 50PECh. 1 - Prob. 51PECh. 1 - Prob. 52PECh. 1 - Suppose the graph of g is given. Write equations...Ch. 1 - Prob. 54PECh. 1 - In Exercises 55–58, graph each function, not by...Ch. 1 - In Exercises 55–58, graph each function, not by...Ch. 1 - Prob. 57PECh. 1 - Prob. 58PECh. 1 - Prob. 59PECh. 1 - Prob. 60PECh. 1 - Prob. 61PECh. 1 - Prob. 62PECh. 1 - Prob. 63PECh. 1 - Prob. 64PECh. 1 - Prob. 65PECh. 1 - Prob. 66PECh. 1 - Prob. 67PECh. 1 - In Exercises 65–68, ABC is a right triangle with...Ch. 1 - Height of a pole Two wires stretch from the top T...Ch. 1 - Prob. 70PECh. 1 - Prob. 71PECh. 1 - Prob. 72PECh. 1 - Prob. 1AAECh. 1 - Prob. 2AAECh. 1 - Prob. 3AAECh. 1 - If g(x) is an odd function defined for all values...Ch. 1 -
Graph the equation |x| + |y| = 1 + x.
Ch. 1 -
Graph the equation y + |y| = x + |x|.
Ch. 1 - Prob. 7AAECh. 1 - Prob. 8AAECh. 1 - Prob. 9AAECh. 1 - Prob. 10AAECh. 1 - Show that if f is both even and odd, then f(x) = 0...Ch. 1 - Prob. 12AAECh. 1 - Prob. 13AAECh. 1 - Prob. 14AAECh. 1 -
An object’s center of mass moves at a constant...Ch. 1 - Prob. 16AAECh. 1 - Consider the quarter-circle of radius 1 and right...Ch. 1 - Let f(x) = ax + b and g(x) = cx + d. What...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- (28 points) Define T: [0,1] × [−,0] → R3 by T(y, 0) = (cos 0, y, sin 0). Let S be the half-cylinder surface traced out by T. (a) (4 points) Calculate the normal field for S determined by T.arrow_forward(14 points) Let S = {(x, y, z) | z = e−(x²+y²), x² + y² ≤ 1}. The surface is the graph of ze(+2) sitting over the unit disk. = (a) (4 points) What is the boundary OS? Explain briefly. (b) (4 points) Let F(x, y, z) = (e³+2 - 2y, xe³±² + y, e²+y). Calculate the curl V × F.arrow_forward(6 points) Let S be the surface z = 1 − x² - y², x² + y² ≤1. The boundary OS of S is the unit circle x² + y² = 1. Let F(x, y, z) = (x², y², z²). Use the Stokes' Theorem to calculate the line integral Hint: First calculate V x F. Jos F F.ds.arrow_forward
- (28 points) Define T: [0,1] × [−,0] → R3 by T(y, 0) = (cos 0, y, sin 0). Let S be the half-cylinder surface traced out by T. (a) (4 points) Calculate the normal field for S determined by T.arrow_forwardI need the last answer t=? I did got the answer for the first two this is just homework.arrow_forward7) 8) Let R be the region bounded by the given curves as shown in the figure. If the line x = k divides R into two regions of equal area, find the value of k 7. y = 3√x, y = √x and x = 4 8. y = -2, y = 3, x = −3, and x = −1 -1 2 +1 R Rarrow_forward
- Solve this question and show steps.arrow_forwardu, v and w are three coplanar vectors: ⚫ w has a magnitude of 10 and points along the positive x-axis ⚫ v has a magnitude of 3 and makes an angle of 58 degrees to the positive x- axis ⚫ u has a magnitude of 5 and makes an angle of 119 degrees to the positive x- axis ⚫ vector v is located in between u and w a) Draw a diagram of the three vectors placed tail-to-tail at the origin of an x-y plane. b) If possible, find w × (ū+v) Support your answer mathematically or a with a written explanation. c) If possible, find v. (ū⋅w) Support your answer mathematically or a with a written explanation. d) If possible, find u. (vxw) Support your answer mathematically or a with a written explanation. Note: in this question you can work with the vectors in geometric form or convert them to algebraic vectors.arrow_forwardQuestion 3 (6 points) u, v and w are three coplanar vectors: ⚫ w has a magnitude of 10 and points along the positive x-axis ⚫ v has a magnitude of 3 and makes an angle of 58 degrees to the positive x- axis ⚫ u has a magnitude of 5 and makes an angle of 119 degrees to the positive x- axis ⚫ vector v is located in between u and w a) Draw a diagram of the three vectors placed tail-to-tail at the origin of an x-y plane. b) If possible, find w × (u + v) Support your answer mathematically or a with a written explanation. c) If possible, find v. (ū⋅ w) Support your answer mathematically or a with a written explanation. d) If possible, find u (v × w) Support your answer mathematically or a with a written explanation. Note: in this question you can work with the vectors in geometric form or convert them to algebraic vectors.arrow_forward
- K Find all values x = a where the function is discontinuous. For each value of x, give the limit of the function as x approaches a. Be sure to note when the limit doesn't exist. x-7 p(x) = X-7 Select the correct choice below and, if necessary, fill in the answer box(es) within your choice. (Use a comma to separate answers as needed.) OA. f is discontinuous at the single value x = OB. f is discontinuous at the single value x= OC. f is discontinuous at the two values x = OD. f is discontinuous at the two values x = The limit is The limit does not exist and is not co or - ∞. The limit for the smaller value is The limit for the larger value is The limit for the smaller value is The limit for the larger value does not exist and is not c∞ or -arrow_forwardK x3 +216 complete the table and use the results to find lim k(x). If k(x) = X+6 X-6 X -6.1 -6.01 - 6.001 - 5.999 - 5.99 -5.9 k(x) Complete the table. X -6.1 -6.01 - 6.001 - 5.999 - 5.99 - 5.9 k(x) (Round to three decimal places as needed.) Find the limit. Select the correct choice below and, if necessary, fill in the answer box within your choice.arrow_forwardSketch the slope field that represents the differential equation. × Clear Undo Redo y ४|० || 33 dy dxarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning

Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Points, Lines, Planes, Segments, & Rays - Collinear vs Coplanar Points - Geometry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=dDWjhRfBsKM;License: Standard YouTube License, CC-BY
Naming Points, Lines, and Planes; Author: Florida PASS Program;https://www.youtube.com/watch?v=F-LxiLSSaLg;License: Standard YouTube License, CC-BY