College Physics
College Physics
10th Edition
ISBN: 9781285737027
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 12, Problem 28P

Suppose the Universe is considered to be an ideal gas of hydrogen atoms expanding adiabatically. (a) If the density of the gas in the Universe is one hydrogen atom per cubic meter, calculate the number of moles per unit volume (n/V). (b) Calculate the pressure of the Universe, taking the temperature of the Universe as 2.7 K. (c) If the current radius of the Universe is 15 billion light-years (1.4 × 1026 m), find the pressure of the Universe when it was the size of a nutshell, with radius 2.0 × 10−2 m. (Be careful: Calculator overflow can occur.)

Blurred answer
Students have asked these similar questions
The geometry of spacetime in the Universe on large scales is determined by the mean energy density of the matter in the Universe, ρ. The critical density of the Universe is denoted by ρ0 and can be used to define the parameter Ω0 = ρ/ρ0. Describe the geometry of space when: (i) Ω0 < 1; (ii) Ω0 = 1; (iii) Ω0 > 1. Explain how measurements of the angular sizes of the hot- and cold-spots in the CMB projected on the sky can inform us about the geometry of spacetime in our Universe. What do measurements of these angular sizes by the WMAP and PLANCK satellites tell us about the value of Ω0?
In the deep space between galaxies, the number density of atoms is as low as 106 atoms/m3, and the temperature is a frigid 2.7 K. part (a)  What is the pressure, in pascals, in the region between galaxies?  part (b)  What volume, in cubic meters, is occupied by 3.5 mol of gas? Part (c)  If this volume is a cube, what is the length of one of its edges, in kilometers?
Recent findings in astrophysics suggest that the observable universe can be modeled as a sphere of radius R=13.7x109 light-years=13.0 x 1025m with an average total mass density of about 1x10-26 kg/m3 Only about 4% of total mass is due to “ordinary” matter (such as protons, neutrons, and electrons). Estimate how much ordinary matter (in kg) there is in the observable universe. (For the light-year, see Problem 19.)

Chapter 12 Solutions

College Physics

Ch. 12 - Prob. 13CQCh. 12 - Prob. 14CQCh. 12 - An ideal gas is compressed to half its initial...Ch. 12 - A thermodynamic process occurs in which the...Ch. 12 - Prob. 17CQCh. 12 - An ideal gas is enclosed in a cylinder with a...Ch. 12 - Sketch a PV diagram and find the work done by the...Ch. 12 - Gas in a container is at a pressure of 1.5 atm and...Ch. 12 - A 40.0-g projectile is launched by the expansion...Ch. 12 - A gas expands from I to F along the three paths...Ch. 12 - Sketch a PV diagram of the following processes:...Ch. 12 - A sample of helium behaves as an ideal gas as it...Ch. 12 - (a) Find the work done by an ideal gas as it...Ch. 12 - One mole of an ideal gas initially at a...Ch. 12 - (a) Determine the work done on a fluid that...Ch. 12 - Prob. 11PCh. 12 - A cylinder of volume 0.300 m3 contains 10.0 mol of...Ch. 12 - A gas expands from I to F in Figure P12.5. The...Ch. 12 - In a running event, a sprinter does 4.8 105 J of...Ch. 12 - A gas is compressed at a constant pressure of...Ch. 12 - A quantity of a monatomic ideal gas undergoes a...Ch. 12 - A gas is enclosed in a container fitted with a...Ch. 12 - A monatomic ideal gas under-goes the thermodynamic...Ch. 12 - An ideal gas is compressed from a volume of Vi =...Ch. 12 - A system consisting of 0.025 6 moles of a diatomic...Ch. 12 - An ideal monatomic gas expands isothermally from...Ch. 12 - An ideal gas expands at constant pressure. (a)...Ch. 12 - An ideal monatomic gas is contained in a vessel of...Ch. 12 - Consider the cyclic process described by Figure...Ch. 12 - A 5.0-kg block of aluminum is heated from 20C to...Ch. 12 - One mole of gas initially at a pressure of 2.00...Ch. 12 - Consider the Universe to be an adiabatic expansion...Ch. 12 - Suppose the Universe is considered to be an ideal...Ch. 12 - A gas increases in pressure from 2.00 atm to 6.00...Ch. 12 - An ideal gas expands at a constant pressure of...Ch. 12 - A heat engine operates between a reservoir at 25C...Ch. 12 - A heat engine is being designed to have a Carnot...Ch. 12 - The work done by an engine equals one-fourth the...Ch. 12 - In each cycle of its operation, a heat engine...Ch. 12 - One of the most efficient engines ever built is a...Ch. 12 - A gun is a heat engine. In particular, it is an...Ch. 12 - An engine absorbs 1.70 kJ from a hot reservoir at...Ch. 12 - A heat pump has a coefficient of performance of...Ch. 12 - A freezer has a coefficient of performance of...Ch. 12 - Suppose an ideal (Carnot) heal pump could be...Ch. 12 - In one cycle a heat engine absorbs 500 J from a...Ch. 12 - A power plant has been proposed that would make...Ch. 12 - Prob. 43PCh. 12 - A heat engine operates in a Carnot cycle between...Ch. 12 - A Styrofoam cup holding 125 g of hot water at 1.00...Ch. 12 - A 65-g ice cube is initially at 0.0C. (a) Find the...Ch. 12 - A freezer is used to freeze 1.0 L of water...Ch. 12 - What is the change in entropy of 1.00 kg of liquid...Ch. 12 - A 70.0-kg log falls from a height of 25.0 m into a...Ch. 12 - Prob. 50PCh. 12 - Prob. 51PCh. 12 - When an aluminum bar is temporarily connected...Ch. 12 - Prepare a table like Table 12.3 for the following...Ch. 12 - Prob. 54PCh. 12 - Prob. 55PCh. 12 - Prob. 56PCh. 12 - Sweating is one of the main mechanisms with which...Ch. 12 - A Carnot engine operates between the temperatures...Ch. 12 - Prob. 59APCh. 12 - A Carnot engine operates between 100C and 20C. How...Ch. 12 - A substance undergoes the cyclic process shown in...Ch. 12 - When a gas follows path 123 on the PV diagram in...Ch. 12 - Prob. 63APCh. 12 - An ideal gas initially at pressure P0, volume V0,...Ch. 12 - One mole of neon gas is heated from 300. K to 420....Ch. 12 - Every second at Niagara Falls, approximately 5.00 ...Ch. 12 - A cylinder containing 10.0 moles of a monatomic...Ch. 12 - Prob. 68APCh. 12 - Suppose you spend 30.0 minutes on a stair-climbing...Ch. 12 - Hydrothermal vents deep on the ocean floor spout...Ch. 12 - An electrical power plant has an overall...Ch. 12 - A diatomic ideal gas expands from a volume of VA =...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    College Physics
    Physics
    ISBN:9781285737027
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
    Text book image
    Physics for Scientists and Engineers: Foundations...
    Physics
    ISBN:9781133939146
    Author:Katz, Debora M.
    Publisher:Cengage Learning
    Text book image
    College Physics
    Physics
    ISBN:9781305952300
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
  • Text book image
    Modern Physics
    Physics
    ISBN:9781111794378
    Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
    Publisher:Cengage Learning
    Text book image
    College Physics
    Physics
    ISBN:9781938168000
    Author:Paul Peter Urone, Roger Hinrichs
    Publisher:OpenStax College
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Kinetic Molecular Theory and its Postulates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=o3f_VJ87Df0;License: Standard YouTube License, CC-BY