PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 12, Problem 20P

(a)

To determine

The magnitude of the force F applied on the board.

(a)

Expert Solution
Check Mark

Answer to Problem 20P

  181N

Explanation of Solution

Given:

Length of the board, L=3.0 m

Mass of the board, m=5 kg

The angle between the board and the horizontal surface, θ=300

Mass of the block rests on the board, M=60 kg

Distance between the block and the hinge = 80 cm = 0.8 m

Formula used:

Applying rotational equilibrium condition to the board, that is Στ=0 about an axis through the hinge,

  F[Lcosθ]mg[L2cosθ]Mg[L4cosθ]=0

  F=m[L2cosθ]+M[L4cosθ][Lcosθ]g

  F=m(L2)+M(L4)(L)g  (1)

Calculation:

In figure 1,

  mg is the weight of the board

  Fhinge is the force exerted by the hinge

  Mg is the weight of the block

  F is the force acting vertically on the right end of the board

  PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS, Chapter 12, Problem 20P , additional homework tip  1

FIGURE: 1

Substituting the numerical values in equation (1) ,

  F=5.0 kg × 3m2 + 60 kg × 3 m43 m(9.8 m/s2)

  =5.0 kg ×1.5 m +60 kg × 0.8 m3 m(9.8 m/s2)

  =181N

Conclusion:

The magnitude of the force F applied on the board is 181N .

(b)

To determine

The force exerted by the hinge.

(b)

Expert Solution
Check Mark

Answer to Problem 20P

  456N

Explanation of Solution

Given:

Length of the board, L=3.0 m

Mass of the board, m=5 kg

The angle between the board and the horizontal surface, θ=300

Mass of the block rests on the board, M=60 kg

Distance between the block and the hinge = 80 cm = 0.8 m

Formula used:

Applying ΣFy=0 to the board,

  FhingeMgmg+F=0

  Fhinge=Mg+mgF=(M+m)gF  (2)

Calculation:

Substituting the numerical values in equation (2) ,

  Fhinge=(60kg+5kg)(9.8m/s2)-181NFhinge= 456N

Conclusion:

The force exerted by the hinge is 456N .

(c)

To determine

The magnitude of the force F as well as the force exerted by the hinge, if F is exerted at right angles to the board.

(c)

Expert Solution
Check Mark

Answer to Problem 20P

The magnitude of the force F is 0.16kN

The magnitude of the force exerted by the hinge Fhinge is 0.51kN .

Explanation of Solution

Given:

Length of the board, L=3.0 m

Mass of the board, m=5 kg

The angle between the board and the horizontal surface, θ=300

Mass of the block rests on the board, M=60 kg

Distance between the block and the hinge = 80 cm = 0.8 m

Formula used:

Applying rotational equilibrium condition to the board, that is Στ=0 about the hinge,

  F[L]mg[L2cosθ]Mg[L4cosθ]=0

  F[L]=mg[L2cosθ]+Mg[L4cosθ]

  F=mg[L2cosθ]+Mg[L4cosθ]L=mL2+ML4Lgcosθ  (3)

Applying ΣFy=0 to the board,

  FhingesinθMgmg+Fcos300=0

  Fhingesinθ=(M+m)gFcos300  (4)

Applying ΣFx=0 to the board,

  FhingecosθFsin300=0

  Fhingecosθ=Fsin300  (5)

  Fhinge=Fsin300cosθ  (6)

Dividing equation (4) by equation (5) ,

  FhingesinθFhingecosθ=(M+m)gFcos300Fsin300

  tanθ=(M+m)g+Fcos300Fsin300

  θ=tan1[(M+m)g+Fcos300Fsin300]  (7)

Calculation:

  PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS, Chapter 12, Problem 20P , additional homework tip  2

FIGURE: 2

Substituting the numerical values in equation (3) ,

  F=5 kg×32+60 kg ×343×9.8 m/s2 cos300F=0.16kN

Substituting numerical values in equation (7) ,

  θ=tan1[(60+5)kg×9.8 m/s2-157 N×cos 300157N×sin 300] = 81.10

Now substituting the numerical values in equation (6) ,

  Fhinge=157N×sin300cos81.10=507.39N= 0.51kN

Conclusion:

The magnitude of the force F is 0.16kN .

The magnitude of the force exerted by the hinge Fhinge is 0.51kN .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
For each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank you
A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).
What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter     I =
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Static Equilibrium: concept; Author: Jennifer Cash;https://www.youtube.com/watch?v=0BIgFKVnlBU;License: Standard YouTube License, CC-BY