The way in which basic features of Wopmay orogen are typical of orogenic belts.
Answer to Problem 1RQ
The Wopmay orogen, which is typical of orogenic belts, was formed by the deposition of quartz sandstone, carbonate rocks, mudstone, and flysch deposits.
Explanation of Solution
The Wopmay system can be defined as the deformation of the body of rocks or mountain that has been leveled by the process of erosion. The Wopmay orogen occurred around 2 billion years ago. It is a great reservoir of sedimentary rocks. The basic features of Wopmay orogen that are typical of the orogen belt are described as follows:
(i) Quartz sandstones were the first sedimentary structure that was deposited in the Wopmay orogen. The thick deposit of the quartz sandstone was found in the Slave Craton.
(ii) Wopmay orogen is abundant in carbonate rocks. The carbonate rocks, which have the layers of stromatolites, have been deposited on the top of the quartz sandstone. These rocks help in the formation of carbonate platforms.
(iii) The carbonate platforms facilitate the deposition of transitional mudstones, which indicate the down wrapping of the platform for the formation of the foreland basin.
(iv) The deposition of flysch deposits (shale and turbidites ) occurred after the deposition of mudstones. The thickening of the Wopmay flysch increased with the deposition of plutonic rocks from westwards.
(v) The upward deposition of flysch grades into the beds of stromatolites and mudstones created the shallow-water environment. This also helped in shallowing the foreland basin.
Want to see more full solutions like this?
- f the same amount of sunlight was hitting an area of land and an area of water, which area would heat more rapidly? The land would heat more rapidly. The water would heat more rapidly. They would both heat at about the same rate It would depend on the characteristics of the water and land.arrow_forwardThe Atlantic and Gulf Coastal Plain physiographic province has which of the following characteristics? Many fertile swamps and marshes Low, rolling hills Folding, uplift, and faulting Small mountain ranges and flat valleysarrow_forwardSuppose you are visiting the equator. It is noon. The Sun is at its highest point in the sky for the day, which is directly over your head. You call a friend on the phone, and she says it is also noon where she is but the Sun is not directly overhead at that location and time. It is a little lower in the sky for her. Compare the longitude and latitude of your location with the longitude and latitude of your friend's location. Are they alike or different? How do you know?arrow_forward
- Provide examples to illustrate the effects of glacier and ice sheet melting on climate globally and regionally. Use words to illustrate any feedback mechanisms between melting ice sheets and the climate.arrow_forwardUse diagrams and word explanations to show how excess heat from the tropics is transferred to higher latitudes (discuss cells and ciruclations) . Additionally, show how the broadening of the Hadley Cell, caused by rising greenhouse gases, could affect surface climate in subtropical and mid-latitude regions.arrow_forwardExplain why the Earth is in not in radiative equilibriumarrow_forward
- Showing the energy flows into and out of Earth’s atmosphere with energy sketches. Clearly label each flow for what it represents, distinguishing between solar and terrestrial energy flows. Explain the diagrams in more detailsarrow_forward44) In periglacial environments, the layer of ground that thaws every summer and freezes every winter is called A) frost layer B) permafrost C) active layer D) discontinuous permafrostarrow_forwardUse the attached piezometer map to make your own, clean version of the map, and indicate the elevation of the water table at all piezometer locations. Draw equipotential lines (lines of equal water table elevation) using regular intervals – creating a contoured map of the water table. Determine the direction of groundwater flow based on the horizontal gradient. Label the areas of recharge and discharge directly on your map. Flow lines: Draw flow lines on your water table map. The lines should be at right angles to the equipotential lines and extend from the recharge area to the discharge area. Hydraulic Gradient, Specific Discharge (Darcy Flux), Average Linear Velocity: Using your water table map, estimate an average hydraulic gradient between two locations, call them locations A and B, one at the eastern-most and a second at the western-most extent of your dataset (note the north arrow on the map). Calculate the specific discharge, q, between the two locations. For this calculation…arrow_forward
- Applications and Investigations in Earth Science ...Earth ScienceISBN:9780134746241Author:Edward J. Tarbuck, Frederick K. Lutgens, Dennis G. TasaPublisher:PEARSONExercises for Weather & Climate (9th Edition)Earth ScienceISBN:9780134041360Author:Greg CarbonePublisher:PEARSONEnvironmental ScienceEarth ScienceISBN:9781260153125Author:William P Cunningham Prof., Mary Ann Cunningham ProfessorPublisher:McGraw-Hill Education
- Earth Science (15th Edition)Earth ScienceISBN:9780134543536Author:Edward J. Tarbuck, Frederick K. Lutgens, Dennis G. TasaPublisher:PEARSONEnvironmental Science (MindTap Course List)Earth ScienceISBN:9781337569613Author:G. Tyler Miller, Scott SpoolmanPublisher:Cengage LearningPhysical GeologyEarth ScienceISBN:9781259916823Author:Plummer, Charles C., CARLSON, Diane H., Hammersley, LisaPublisher:Mcgraw-hill Education,