![Essential Calculus: Early Transcendentals; MAC 2311 Sequence| MAC 2281Sequence USF (Essential Calculus)](https://www.bartleby.com/isbn_cover_images/9781285101552/9781285101552_largeCoverImage.gif)
Concept explainers
(a)
To write: An expression for a double Riemann sum of the given function.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 1RCC
The expression for a double Riemann sum is
Explanation of Solution
Given that the continuous function
The double integral of f over the rectangle R is given by,
Here,
The given continuous function is
The sample points of each rectangle is denoted by
The image value of the sample points under the function
The sum mentioned above
(b)
To write: The definition of
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 1RCC
The definition of
Explanation of Solution
The double integral can be expressed in terms of double Riemann sum as follows:
The double integral of f over the rectangle R is,
Here,
The given continuous function is
The sample points of each rectangle is denoted by
The image value of the sample points under the function
Thus, the definition of
(c)
To write: The geometric interpretation of
(c)
![Check Mark](/static/check-mark.png)
Explanation of Solution
When
If suppose the given function f takes both positive and negative values, then it does not denote the volume exactly. But, it is taken that the volume of the function of the two graphs one above the xy-plane and one below the xy-plane.
(d)
To evaluate: The value of the double integral
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 1RCC
The value of
Explanation of Solution
Rewrite the indefinite double integral by definite double integral from the equations or inequalities in the given rectangle. Then, as per the rules of
Thus, the value of
(e)
To interpret: About the Midpoint Rule for double integrals.
(e)
![Check Mark](/static/check-mark.png)
Explanation of Solution
The double integral,
Here,
The given function is
The mid points of each rectangle is denoted by
The Riemann sum constants are denoted by m, n.
Separate the given region by small rectangles by the method of Riemann sum for the double integrals. Then, pick the sample points from the Midpoint of each rectangle.
Want to see more full solutions like this?
Chapter 12 Solutions
Essential Calculus: Early Transcendentals; MAC 2311 Sequence| MAC 2281Sequence USF (Essential Calculus)
- Topic 2 Evaluate S x dx, using u-substitution. Then find the integral using 1-x2 trigonometric substitution. Discuss the results! Topic 3 Explain what an elementary anti-derivative is. Then consider the following ex integrals: fed dx x 1 Sdx In x Joseph Liouville proved that the first integral does not have an elementary anti- derivative Use this fact to prove that the second integral does not have an elementary anti-derivative. (hint: use an appropriate u-substitution!)arrow_forward1. Given the vector field F(x, y, z) = -xi, verify the relation 1 V.F(0,0,0) = lim 0+ volume inside Se ff F• Nds SE where SE is the surface enclosing a cube centred at the origin and having edges of length 2€. Then, determine if the origin is sink or source.arrow_forward4 3 2 -5 4-3 -2 -1 1 2 3 4 5 12 23 -4 The function graphed above is: Increasing on the interval(s) Decreasing on the interval(s)arrow_forward
- Question 4 The plot below represents the function f(x) 8 7 3 pts O -4-3-2-1 6 5 4 3 2 + 1 2 3 5 -2+ Evaluate f(3) f(3) = Solve f(x) = 3 x= Question 5arrow_forwardQuestion 14 6+ 5 4 3 2 -8-2 2 3 4 5 6 + 2 3 4 -5 -6 The graph above is a transformation of the function f(x) = |x| Write an equation for the function graphed above g(x) =arrow_forwardQuestion 8 Use the graph of f to evaluate the following: 6 f(x) 5 4 3 2 1 -1 1 2 3 4 5 -1 t The average rate of change of f from 4 to 5 = Question 9 10 ☑ 4parrow_forward
- Question 15 ✓ 6 pts 1 Details The function shown below is f(x). We are interested in the transformed function g(x) = 3f(2x) - 1 a) Describe all the transformations g(x) has made to f(x) (shifts, stretches, etc). b) NEATLY sketch the transformed function g(x) and upload your graph as a PDF document below. You may use graph paper if you want. Be sure to label your vertical and horizontal scales so that I can tell how big your function is. 1- 0 2 3 4 -1- Choose File No file chosen Question 16 0 pts 1 Detailsarrow_forwardhelparrow_forwardQuestion 2 Let F be a solenoidal vector field, suppose V × F = (-8xy + 12z², −9x² + 4y² + 9z², 6y²), and let (P,Q,R) = V²F(.725, —.283, 1.73). Then the value of sin(2P) + sin(3Q) + sin(4R) is -2.024 1.391 0.186 -0.994 -2.053 -0.647 -0.588 -1.851 1 ptsarrow_forward
- 1 pts Let F and G be vector fields such that ▼ × F(0, 0, 0) = (0.76, -9.78, 3.29), G(0, 0, 0) = (−3.99, 6.15, 2.94), and G is irrotational. Then sin(5V (F × G)) at (0, 0, 0) is Question 1 -0.246 0.072 -0.934 0.478 -0.914 -0.855 0.710 0.262 .arrow_forwardanswerarrow_forward1. Given the vector field F(x, y, z) = -zi, verify the relation 1 VF(0,0,0) lim +0+ volume inside S ff F• Nds S. where S, is the surface enclosing a cube centred at the origin and having edges of length 2€. Then, determine if the origin is sink or source.arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168383/9781938168383_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305652231/9781305652231_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305115545/9781305115545_smallCoverImage.gif)