Concept explainers
If everything on Circuit B7 were turned on, what would be the total current draw?
______________________________________________________________________
Calculate the total current drawn when every load on Circuit B7 is turned on.
Answer to Problem 1R
The total current drawn is 6.5 A.
Explanation of Solution
Given data:
Refer to TABLE 12-1 in the textbook for the various loads of Circuit B7.
Consider that the Volt-Amperes (VA) rating when all the loads in Circuit B7 are turned on is 780 W.
The value of voltage rating of the elements in Circuit B7 is 120 V.
Formula used:
Consider the expression for the total current.
Here,
VA is Volt-Ampere rating, and
E is voltage.
Calculation:
Substitute 780 W for VA and 120 V for E in Equation (1).
Conclusion:
Thus, the total current drawn is 6.5 A.
Want to see more full solutions like this?
Chapter 12 Solutions
EBK ELECTRICAL WIRING RESIDENTIAL
Additional Engineering Textbook Solutions
Starting Out with Python (4th Edition)
Web Development and Design Foundations with HTML5 (8th Edition)
Mechanics of Materials (10th Edition)
Thermodynamics: An Engineering Approach
Starting Out with C++ from Control Structures to Objects (9th Edition)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
- Q3: Find the state-space representation for the system given by:- + 16 + ၃- တိုင်း၍ရား +arrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward"I need an expert solution with detailed steps for integration." The normalized Far-field pattern of an antenna is given by: E = √√sine (cosq) Determine: 1) Beam solid angle 2) Exact Directivity 0≤0≤ 180, while 0≤≤180, and 270 ≤≤ 360 3) HPBW in both azimuth and elevationarrow_forward
- "I need an expert solution with detailed steps for integration." Find Directivity, the effect aperture and aperture efficiency of the antenna, if it has physical aperture of 2.4 x 10-2-2 and the radiation intensity can be approximated by: U(0, 4) = (sesce 0°s0<20° 20°ses600 1.0°≤≤ 360°arrow_forwardDon't use ai to answer I will report you answerarrow_forwardDon't use ai to answer I will report you answerarrow_forward
- "Can you explain the integration method to show the result?" The radiation intensity of an aperture antenna, mounted on an infinite ground plane with perpendicular to the aperture, is rotationally symmetric (not a function of 4), and it is given by U = π sin Find the approximate directivity (dimensionless and in dB) using (a) numerical integration. Use the DIRECTIVITY computer program at the end of this chapter. U sin ( sin ) sin (a) Directly Do = 14.0707 = 10log (14.0707) = 11.48 dBarrow_forwardDon't use ai to answer I will report you answerarrow_forwardcomplete the table in the attached photos. instructions are below the tablearrow_forward
- Please show the solution and answers in each. Thank you. A 120 MVA, 19.5 kV generator has Xₛ = 1.5 pu and is connected to a transmission line by a transformer rated 150 MVA , 230 wye/18 delta kV Watts, and X = 0.1 pu. If the base to be used in the calculation is 100 MVA, 230 kV for the transmission line. a. Find the per-unit values to be used for the transformer and generator reactances. b. If the transformer delivers 80% of its rated capacity to the line at 220 kV, express the current in per unit. c. Find also the current in the genrator in amperes.arrow_forwardI need an expert mathematical solution. The radiation intensity of an aperture antenna, mounted on an infinite ground plane with perpendicular to the aperture. is rotationally symmetric (not a function of 4), and it is given by U sin (77 sin 0) π sin Find the approximate directivity (dimensionless and in dB) using numerical integration. Use the DIRECTIVITY computer program at the end of this chapter.arrow_forwardDon't use ai to answer I will report you answer.arrow_forward
- EBK ELECTRICAL WIRING RESIDENTIALElectrical EngineeringISBN:9781337516549Author:SimmonsPublisher:CENGAGE LEARNING - CONSIGNMENT