![OWLv2 with Student Solutions Manual eBook for Masterton/Hurley's Chemistry: Principles and Reactions, 8th Edition, [Instant Access], 4 terms (24 months)](https://www.bartleby.com/isbn_cover_images/9781305863170/9781305863170_largeCoverImage.jpg)
The following data are for the system
(a) How long does it take the system to reach equilibrium?
(b) How does the rate of the forward reaction compare with the rate of the reverse reaction after 30 s? After 90 s?

(a)
Interpretation:
The time required for the system to reach at equilibrium needs to be determined.
Concept introduction:
The system is said to be in equilibrium if the there is no change in the partial pressure or concentration of reactant and product takes place.
Answer to Problem 1QAP
80 s.
Explanation of Solution
The given reaction is as follows:
The data for the system is given as follows:
Time (s) | |
|
0 | 1 | 0.000 |
20 | 0.83 | 0.34 |
40 | 0.72 | 0.56 |
60 | 0.65 | 0.70 |
80 | 0.62 | 0.76 |
100 | 0.62 | 0.76 |
In a system, equilibrium is a stage when the partial pressure or concentration of both reactant and product become constant or no further change in the partial pressure or concentration of reactant and as well as product takes place.
From the data, the partial pressure of reactant, A decreases from 0 s to 80 s and then become constant. In the same way, the partial pressure of product, B increases from 0 s to 90 s and then become constant. Therefore, at 80 s the concentration of both reactant and product become constant therefore, system will reach equilibrium at 80 s.

(b)
Interpretation:
The relation between the rate of forward reaction and that of the reverse reaction needs to determine after 30 s and after 90 s.
Concept introduction:
The rate of the forward reaction depends on the partial pressure of reactant and that of the reverse reaction depends on the partial pressure of the product. At equilibrium, the rate of forward reaction is equal to the rate of reverse reaction.
Answer to Problem 1QAP
After 30 s, the rate of the forward reaction is greater than the rate of the reverse reaction and after 90 s, the rate of the forward reaction is equal to the rate of the reverse reaction.
Explanation of Solution
The given reaction is as follows:
The rate expression for the given system is represented as follows:
This is the rate of the forward reaction.
The same expression for the reverse reaction will be:
At equilibrium, the rate of forward reaction is equal to the rate of backward reaction thus,
Also, at equilibrium the partial pressures of reactant and product are 0.62 atm and 0.76 atm respectively, putting the values,
Thus,
Or,
Thus, the expression for the reverse reaction will be:
Now, after 30 s the partial pressure of gas A is 0.72 atm thus, rate of forward reaction will be:
The partial pressure of gas B after 30 s is 0.56 atm thus, the rate of reverse reaction will be:
Dividing equation (1) and (2),
Thus, the rate of forward reaction is 2.12 times the rate of reverse reaction or rate of forward reaction is greater than that of the reverse reaction after 30 s.
Now, after 90 s the partial pressure of gas A is 0.62 atm thus, rate of forward reaction will be:
The partial pressure of gas B after 90 s is 0.76 atm thus, the rate of reverse reaction will be:
Dividing equation (1) and (2),
Thus, the rate of forward reaction is approximately equals to the reverse reaction after 90 s.
Want to see more full solutions like this?
Chapter 12 Solutions
OWLv2 with Student Solutions Manual eBook for Masterton/Hurley's Chemistry: Principles and Reactions, 8th Edition, [Instant Access], 4 terms (24 months)
- Using reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NO2 (g) = N2O4(g) AGº = -5.4 kJ Now suppose a reaction vessel is filled with 4.53 atm of dinitrogen tetroxide (N2O4) at 279. °C. Answer the following questions about this system: Under these conditions, will the pressure of N2O4 tend to rise or fall? Is it possible to reverse this tendency by adding NO2? In other words, if you said the pressure of N2O4 will tend to rise, can that be changed to a tendency to fall by adding NO2? Similarly, if you said the pressure of N2O4 will tend to fall, can that be changed to a tendency to '2' rise by adding NO2? If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO 2 needed to reverse it. Round your answer to 2 significant digits. 00 rise ☐ x10 fall yes no ☐ atm G Ar 1arrow_forwardWhy do we analyse salt?arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. H H CH3OH, H+ H Select to Add Arrows H° 0:0 'H + Q HH ■ Select to Add Arrows CH3OH, H* H. H CH3OH, H+ HH ■ Select to Add Arrows i Please select a drawing or reagent from the question areaarrow_forward
- What are examples of analytical methods that can be used to analyse salt in tomato sauce?arrow_forwardA common alkene starting material is shown below. Predict the major product for each reaction. Use a dash or wedge bond to indicate the relative stereochemistry of substituents on asymmetric centers, where applicable. Ignore any inorganic byproducts H Šali OH H OH Select to Edit Select to Draw 1. BH3-THF 1. Hg(OAc)2, H2O =U= 2. H2O2, NaOH 2. NaBH4, NaOH + Please select a drawing or reagent from the question areaarrow_forwardWhat is the MOHR titration & AOAC method? What is it and how does it work? How can it be used to quantify salt in a sample?arrow_forward
- Predict the major products of this reaction. Cl₂ hv ? Draw only the major product or products in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If there will be no products because there will be no significant reaction, just check the box under the drawing area and leave it blank. Note for advanced students: you can ignore any products of repeated addition. Explanation Check Click and drag to start drawing a structure. 80 10 m 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility DII A F1 F2 F3 F4 F5 F6 F7 F8 EO F11arrow_forwardGiven a system with an anodic overpotential, the variation of η as a function of current density- at low fields is linear.- at higher fields, it follows Tafel's law.Calculate the range of current densities for which the overpotential has the same value when calculated for both cases (the maximum relative difference will be 5%, compared to the behavior for higher fields).arrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: N2 (g) + 3H2 (g) = 2NH3 (g) AGº = -34. KJ Now suppose a reaction vessel is filled with 8.06 atm of nitrogen (N2) and 2.58 atm of ammonia (NH3) at 106. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of N2 tend to rise or fall? ☐ x10 fall Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of N2 will tend to rise, can that be changed to a tendency to fall by adding H2? Similarly, if you said the pressure of N will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. yes no ☐ atm Х ด ? olo 18 Ararrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning




