Concept explainers
Figure 12-15 shows three situations in which the same horizontal rod is supported by a hinge on a wall at one end and a cord at its other end. Without written calculation, rank the situations according to the magnitudes of (a) the force on the rod from the cord, (b) the vertical force on the rod from the hinge, and (c) the horizontal force on the rod from the hinge, greatest first.
Figure 12-15 Question 1.
To rank:
a) The situations according to the magnitudes of the force on the rod from the cord.
b) The situations according to the magnitudes of the vertical force on the rod from the hinge.
c) The situations according to the magnitudes of the horizontal force on the rod form the hinge.
Answer to Problem 1Q
Solution:
a) Magnitudes of force on the rod from the cord in case (1) and (3) is same and greater than that in case (2).
b) Magnitudes of the vertical force on the rod from the hinge is same for all 3 cases.
c) Magnitudes of the horizontal force on the rod form the hinge is same in cases (1) and (3) and is zero in case (2)
Explanation of Solution
1) Concept:
We can use the concept of balancing of forces and torque at equilibrium to rank the situations according to the magnitude of the forces.
2) Formulae:
At equilibrium,
i.
ii.
3) Given:
i. The figure of rod-cable system.
ii. The angle made by the cord with the vertical direction in case 1 and 3 is 500
4) Calculation:
a) We consider the hinge point as the point of rotation. The torques acting on the rod are due to tension in the string and the weight of the rod. In all the three cases, the rod is in static equilibrium, hence:
The weight of the rod is acting at its centre and is the same in magnitude. Hence the torque equation tells us that torque due to tension, it is same in all the cases.
But the cord is making an angle with the vertical in cases (1) and (3). Hence we understand that the torque due to vertical component of the tension (T cos 50o) is the same. Since it is a component of the total tension, we know that the total tension is greater than the components in cases (1) and (3).Thus, for cases (1) and (3) the tension in the string is same and it will be greater than this in case (2).
b) We consider the hinge point as the point of rotation. In all the three cases, the rod is in static equilibrium. So the torques acting on the rod due to the tension in the string and the weight of the rod are balanced and the forces are also balanced.
Thus the vertical force from the hinge on the rod is same in all the three cases.
c) The forces acting on the rod in the horizontal direction are the force from hinge and the horizontal component of tension in the cord. In cases (1) and (3), the tension in the string is the same. Hence their corresponding horizontal components are also the same.
Thus, the horizontal force on the rod from the hinge is the same in cases (1) and (3). In case (2), there is no horizontal component of tension, hence the horizontal force from the hinge is also zero.
Conclusion:
The rod is in static equilibrium in all three cases. From the balancing conditions for torque and forces, we can determine the magnitudes of the forces acting on the rod.
Want to see more full solutions like this?
Chapter 12 Solutions
Fundamentals Of Physics
Additional Science Textbook Solutions
Human Physiology: An Integrated Approach (8th Edition)
Campbell Biology (11th Edition)
Organic Chemistry
Microbiology: An Introduction
Biology: Life on Earth with Physiology (11th Edition)
College Physics: A Strategic Approach (3rd Edition)
- No chatgpt pls will upvotearrow_forward1.62 On a training flight, a Figure P1.62 student pilot flies from Lincoln, Nebraska, to Clarinda, Iowa, next to St. Joseph, Missouri, and then to Manhattan, Kansas (Fig. P1.62). The directions are shown relative to north: 0° is north, 90° is east, 180° is south, and 270° is west. Use the method of components to find (a) the distance she has to fly from Manhattan to get back to Lincoln, and (b) the direction (relative to north) she must fly to get there. Illustrate your solutions with a vector diagram. IOWA 147 km Lincoln 85° Clarinda 106 km 167° St. Joseph NEBRASKA Manhattan 166 km 235° S KANSAS MISSOURIarrow_forwardPlz no chatgpt pls will upvotearrow_forward
- 3.19 • Win the Prize. In a carnival booth, you can win a stuffed gi- raffe if you toss a quarter into a small dish. The dish is on a shelf above the point where the quarter leaves your hand and is a horizontal dis- tance of 2.1 m from this point (Fig. E3.19). If you toss the coin with a velocity of 6.4 m/s at an angle of 60° above the horizontal, the coin will land in the dish. Ignore air resistance. (a) What is the height of the shelf above the point where the quarter leaves your hand? (b) What is the vertical component of the velocity of the quarter just before it lands in the dish? Figure E3.19 6.4 m/s 2.1arrow_forwardCan someone help me answer this thank you.arrow_forward1.21 A postal employee drives a delivery truck along the route shown in Fig. E1.21. Determine the magnitude and direction of the resultant displacement by drawing a scale diagram. (See also Exercise 1.28 for a different approach.) Figure E1.21 START 2.6 km 4.0 km 3.1 km STOParrow_forward
- help because i am so lost and it should look something like the picturearrow_forward3.31 A Ferris wheel with radius Figure E3.31 14.0 m is turning about a horizontal axis through its center (Fig. E3.31). The linear speed of a passenger on the rim is constant and equal to 6.00 m/s. What are the magnitude and direction of the passenger's acceleration as she passes through (a) the lowest point in her circular motion and (b) the high- est point in her circular motion? (c) How much time does it take the Ferris wheel to make one revolution?arrow_forward1.56 ⚫. Three horizontal ropes pull on a large stone stuck in the ground, producing the vector forces A, B, and C shown in Fig. P1.56. Find the magnitude and direction of a fourth force on the stone that will make the vector sum of the four forces zero. Figure P1.56 B(80.0 N) 30.0 A (100.0 N) 53.0° C (40.0 N) 30.0°arrow_forward
- 1.39 Given two vectors A = -2.00 +3.00 +4.00 and B=3.00 +1.00 -3.00k. (a) find the magnitude of each vector; (b) use unit vectors to write an expression for the vector difference A - B; and (c) find the magnitude of the vector difference A - B. Is this the same as the magnitude of B - Ä? Explain.arrow_forward5. The radius of a circle is 5.5 cm. (a) What is the circumference in meters? (b) What is its area in square meters? 6. Using the generic triangle below, solve the following: 0 = 55 and c = 32 m, solve for a and b. a = 250 m and b = 180 m, solve for the angle and c. b=104 cm and c = 65 cm, solve for a and the angle b a 7. Consider the figure below representing the Temperature (T in degrees Celsius) as a function of time t (in seconds) 4 12 20 (a) What is the area under the curve in the figure below? (b) The area under the graph can be calculated using integrals or derivatives? (c) During what interval is the derivative of temperature with respect to time equal to zero?arrow_forwardPart 3: Symbolic Algebra Often problems in science and engineering are done with variables only. Don't let the different letters confuse you. Manipulate them algebraically as though they were numbers. 1. Solve 3x-7= x + 3 for x 2x-1 2. Solve- for x 2+2 In questions 3-11 solve for the required symbol/letter 3. v2 +2a(s-80), a = = 4. B= Ho I 2π r 5. K = kz² 6.xm= MAL ,d= d 7.T, 2 = 8.F=Gm 9. mgh=mv² 10.qV = mu² 80 12. Suppose that the height in meters of a thrown ball after t seconds is given by h =6+4t-t². Complete the square to find the highest point and the time when this happens. 13. Solve by completing the square c₁t² + cat + 3 = 0. 14. Solve for the time t in the following expression = 0 + vot+at²arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College