North Carolina to utilize the wave energy for all of its electricity would it is reasonable?
Explanation of Solution
Given information:
The total annual per capita electricity requirement is
The coastline used wave electricity generation is 5%.
The average efficiency is 20%.
Calculation:
Refer Figure 12.1 in the textbook,
For North Carolina, the wave power is 33 kW/m.
Find the total wave power in the coastline:
Find the total energy available per year:
Consider the population of North Carolina is
Find the total annual electricity for the state:
Compared to this total requirement, the wave energy is about 1%. Other sustainable energy approaches may be more benefecial.
Want to see more full solutions like this?
Chapter 12 Solutions
Bundle: Sustainable Energy, 2nd + Mindtap Engineering, 1 Term (6 Months) Printed Access Card
- I need detailed help solving this exercise from homework of Applied Mechanics.I do not really understand how to do, please do it step by step, not that long but clear. Thank you!arrow_forwardDirection: Write the answer in a bond paper with complete solutions drawings. Strictly write in bond paper and picture it. Topic: Sheer & Moment diagrams, Reaction at Supports, Load Tracing, Method of Joint, and Method of Section Course: Theory Of Structurearrow_forwardDirection: Write the answer in a bond paper with complete solutions drawings. Strictly write in bond paper and picture it. Topic: Sheer & Moment diagrams, Reaction at Supports, Load Tracing, Method of Joint, and Method of Section Course: Theory Of Structurearrow_forward
- Direction: Write the answer in a bond paper with complete solutions drawings. Strictly write in bond paper and picture it. Topic: Sheer & Moment diagrams, Reaction at Supports, Load Tracing, Method of Joint, and Method of Section Course: Theory Of Structurearrow_forwardDirection: Write the answer in a bond paper with complete solutions drawings. Strictly write in bond paper and picture it. Topic: Sheer & Moment diagrams, Reaction at Supports, Load Tracing, Method of Joint, and Method of Section Course: Theory Of Structurearrow_forwardDirection: Write the answer in a bond paper with complete solutions drawings. Strictly write in bond paper and picture it. Topic: Sheer & Moment diagrams, Reaction at Supports, Load Tracing, Method of Joint, and Method of Section Course: Theory Of Structurearrow_forward
- 1. Create Diagrams: Draw the shear and moment diagrams for the given beam. 8k 15k-ft B 12 k -6 ft- -8 ft--8 ft- -8 ft- 4k 4 ft 2 ftarrow_forward10:46 Mechanics of Deform... ← CE104.2T.24.25. FA 1 5 of 6 2.5/10 Rigid bar ABCD is loaded and supported as shown. Steel [E=27800 ksi] bars (1) and (2) are unstressed before the load P is applied. Bar (1) has a cross- sectional area of 0.83 in.² and bar (2) has a cross- sectional area of 0.45 in.2. After load P is applied, the strain in bar (1) is found to be 670 με. Assume L₁=58 in., L2-94 in., a=26 in., b=22 in., and c=36 in. Determine: (a) the stresses in bars (1) and (2). (b) the vertical deflection VD of point D on the rigid bar. (c) the load P. A L₁ B L2 a b 223 D Stream Courses Calendar Morearrow_forwardanswer thisarrow_forward
- exact answerarrow_forwardQ2: For the overhanging beam BD shown, draw the "Influence Lines" for RB, RD S.F. at C (VC) and B.M. at C (Mc) using the static equilibrium method. A B 4 m 5 m 7 marrow_forwardQ1: Draw N.F.D, S.F.D and B.M.D for the frame shown below. Knowing that t support at A is hinge, and at D is roller. B 2 m 5 kN/m C 30 kN 2 D 5 marrow_forward
- Solid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning