
EBK FUNDAMENTALS OF THERMAL-FLUID SCIEN
5th Edition
ISBN: 9781259151323
Author: CENGEL
Publisher: MCGRAW HILL BOOK COMPANY
expand_more
expand_more
format_list_bulleted
Question
Chapter 12, Problem 1P
To determine
Stagnation pressure and how it is measured.
Expert Solution & Answer

Explanation of Solution
Stagnation point and stagnation pressure:
When a stationary object is immersed in a fluid flow stream, the fluid is stopped at the nose (foremost part of object) of the object. This point is called as stagnation point. The pressure that is measured at the stagnation point is known as stagnation pressure. The stagnation pressure is equal to the sum of the static and dynamic pressure.
It is mathematically expressed as follows:
Here, the static pressure is
The stagnation pressure is measured by using the device called pitot tube.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
state is
Derive an expression for the volume expansivity of a substance whose equation of
RT
P
=
v-b
a
v(v + b)TZ
where a and b are empirical constants.
For a gas whose equation of state is P(v-b)=RT, the specified heat difference Cp-Cv
is equal to which of the following (show all work):
(a) R
(b) R-b
(c) R+b
(d) 0
(e) R(1+v/b)
of state is
Derive an expression for the specific heat difference of a substance whose equation
RT
P
=
v-b
a
v(v + b)TZ
where a and b are empirical constants.
Chapter 12 Solutions
EBK FUNDAMENTALS OF THERMAL-FLUID SCIEN
Ch. 12 - Prob. 1PCh. 12 - Express the Bernoulli equation in three different...Ch. 12 - What are the three major assumptions used in the...Ch. 12 - Define static, dynamic, and hydrostatic pressure....Ch. 12 - Prob. 5PCh. 12 - Prob. 6PCh. 12 - Prob. 7PCh. 12 - How is the location of the hydraulic grade line...Ch. 12 - Prob. 9PCh. 12 - Prob. 10P
Ch. 12 - A glass manometer with oil as the working fluid is...Ch. 12 - The velocity of a fluid flowing in a pipe is to be...Ch. 12 - The water level of a tank on a building roof is 20...Ch. 12 - Prob. 14PCh. 12 - Prob. 15PCh. 12 - Prob. 16PCh. 12 - Prob. 17PCh. 12 - Prob. 18PCh. 12 - A piezometer and a Pitot tube are tapped into a...Ch. 12 - The diameter of a cylindrical water tank is Do and...Ch. 12 - Prob. 21PCh. 12 - Prob. 22PCh. 12 - Prob. 23PCh. 12 - An airplane is flying at an altitude of 12,000 m....Ch. 12 - While traveling on a dirt road, the bottom of a...Ch. 12 - Prob. 26PCh. 12 - Prob. 27PCh. 12 - Air at 105 kPa and 37°C flows upward through a...Ch. 12 - A handheld bicycle pump can be used as an atomizer...Ch. 12 - Prob. 31PCh. 12 - The water pressure in the mains of a city at a...Ch. 12 - Prob. 33PCh. 12 - Air is flowing through a venturi meter whose...Ch. 12 - The water level in a tank is 15 m above the...Ch. 12 - What is useful pump head? How is it related to the...Ch. 12 - Prob. 38PCh. 12 - What is irreversible head loss? How is it related...Ch. 12 - Consider the steady adiabatic flow of an...Ch. 12 - Prob. 41PCh. 12 - Prob. 42PCh. 12 - Prob. 43PCh. 12 - Prob. 44PCh. 12 - In a hydroelectric power plant, water flows from...Ch. 12 - Reconsider Prob. 12–45E. Determine the flow rate...Ch. 12 - Prob. 47PCh. 12 - Water is being pumped from a large lake to a...Ch. 12 - A 15-hp (shaft) pump is used to raise water to a...Ch. 12 - Prob. 51PCh. 12 - The water level in a tank is 20 m above the...Ch. 12 - Prob. 53PCh. 12 - Prob. 54PCh. 12 - Water flows at a rate of 20 L/s through a...Ch. 12 - Prob. 56PCh. 12 - Prob. 57PCh. 12 - Prob. 58PCh. 12 - Prob. 59PCh. 12 - Prob. 60PCh. 12 - Prob. 61PCh. 12 - Prob. 62PCh. 12 - Prob. 63PCh. 12 - A 73-percent efficient 12-hp pump is pumping water...Ch. 12 - Prob. 65PCh. 12 - Air flows through a pipe at a rate of 120 L/s. The...Ch. 12 - Air at 100 kPa and 25°C flows in a horizontal duct...Ch. 12 - Prob. 68RQCh. 12 - Prob. 69RQCh. 12 - Prob. 70RQCh. 12 - A 3-m-high large tank is initially filled with...Ch. 12 - Prob. 73RQCh. 12 - Prob. 74RQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Temperature may alternatively be defined as T = ди v Prove that this definition reduces the net entropy change of two constant-volume systems filled with simple compressible substances to zero as the two systems approach thermal equilibrium.arrow_forwardUsing the Maxwell relations, determine a relation for equation of state is (P-a/v²) (v−b) = RT. Os for a gas whose av Tarrow_forward(◉ Homework#8arrow_forwardHomework#8arrow_forwardBox A has a mass of 15 kilograms and is attached to the 20 kilogram Box B using the cord and pulley system shown. The coefficient of kinetic friction between the boxes and surface is 0.2 and the moment of inertia of the pulley is 0.5 kg * m^ 2. After 2 seconds, how far do the boxes move? A бро Barrow_forwardBox A has a mass of 15 kilograms and is attached to the 20 kilogram Box B using the cord and pulley system shown. The coefficient of kinetic friction between the boxes and surface is 0.2 and the moment of inertia of the pulley is 0.5 kg * m^2. Both boxes are 0.25 m long and 0.25 m high. The cord is attached to the bottom of Box A and the middle of box B. After 2 seconds, how far do the boxes move? A From бро Barrow_forwardHomework#8arrow_forwardSign in PDF Lecture W09.pdf PDF MMB241 - Tutorial L9.pdf File C:/Users/KHULEKANI/Desktop/mmb241/MMB241%20-%20Tutorial%20L9.pdf II! Draw | I│Alla | Ask Copilot + of 4 D Topic: Kinetics of Particles: - Forces in dynamic system, Free body diagram, newton's laws of motion, and equations of motion. TQ1. The 10-kg block is subjected to the forces shown. In each case, determine its velocity when t=2s if v 0 when t=0 500 N F = (201) N 300 N (b) TQ2. The 10-kg block is subjected to the forces shown. In each case, determine its velocity at s-8 m if v = 3 m/s at s=0. Motion occurs to the right. 40 N F = (2.5 s) N 200 N 30 N (b) TQ3. Determine the initial acceleration of the 10-kg smooth collar. The spring has an unstretched length of 1 m. 1 σ Q ☆ Q 6 ا الى ☑arrow_forwardSign in PDF Lecture W09.pdf PDF MMB241 - Tutorial L9.pdf File C:/Users/KHULEKANI/Desktop/mmb241/MMB241%20-%20Tutorial%20L9.pdf II! Draw | I│Alla | Ask Copilot + 4 of 4 | D TQ9. If motor M exerts a force of F (10t 2 + 100) N determine the velocity of the 25-kg crate when t kinetic friction between the crate and the plane are μs The crate is initially at rest. on the cable, where t is in seconds, 4s. The coefficients of static and 0.3 and μk = 0.25, respectively. M 3 TQ10. The spring has a stiffness k = 200 N/m and is unstretched when the 25-kg block is at A. Determine the acceleration of the block when s = 0.4 m. The contact surface between the block and the plane is smooth. 0.3 m F= 100 N F= 100 N k = 200 N/m σ Q Q ☆ ا الى 6 ☑arrow_forwardmy ID# is 016948724 please solve this problem step by steparrow_forwardMY ID#016948724 please solve the problem step by spetarrow_forward1 8 4 For the table with 4×4 rows and columns as shown Add numbers so that the sum of any row or column equals .30 Use only these numbers: .1.2.3.4.5.6.10.11.12.12.13.14.14arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill EducationControl Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY