Fundamentals of Biostatistics
Fundamentals of Biostatistics
8th Edition
ISBN: 9781305268920
Author: Bernard Rosner
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 12, Problem 1P

Nutrition

Researchers compared protein intake among three groups of postmenopausal women: (1) women eating a standard American diet (STD), (2) women eating a lacto-ovo-vegetarian diet (LAC), and (3) women eating a strict vegetarian diet (VEG). The mean ± 1 sd for protein intake (mg) is presented in Table 12.29.

Perform a statistical procedure to compare the means of the three groups using the critical-value method.

Table 12.29 Protein intake (mg) among three dietary groups of postmenopausal women

Chapter 12, Problem 1P, Nutrition Researchers compared protein intake among three groups of postmenopausal women: (1) women

Expert Solution & Answer
Check Mark
To determine

Conduct the test to compare the means of the three groups using critical value method.

Answer to Problem 1P

There is sufficient evidence to conclude that there is a significant difference between the means of the three groups at 5% level of significance.

Explanation of Solution

Hypotheses for the test is given below:

Null hypothesis:

H0:μ1=μ2=μ3

Alternative hypothesis:

H1:At least one mean is different

There are 3 groups and 26 observations.

That is, n=26,k=3. Thus, nk=23,k1=2..

The means sum of squares are as follows:

MSBetween=SSBetweenk1MSWithin=SSWithinnk

The sum of squares is calculated as follows:

SSBetween=i=1kniy¯i2i=1kniy¯i2n=10752+10572+64721075+1057+647226=101,99498,707.85=3286.15k1=2MSBetween=SSBetweenk1=3286.152=1643.075SSWithin=i=1kni1si2=10192+101132+61172=3695nk=23MSWithin=SSWithinnk=369523=160.6522

The test statistic for the test is calculated as given below:

F=MSBetweenMSWithin=1643.075160.6522=10.227510.23

Critical value:

Consider the level of significance as 0.05.

The numerator degrees of freedom is 2 and the denominator degrees of freedom is 23.

Software procedure:

Step-by-step procedure to obtain critical value using Excel software:

  • Open Excel sheet.
  • Enter the formula, “=F.INV(0.95,2,23)” in cell A1.
  • Click Enter.

Output using Excel software is given below:

Fundamentals of Biostatistics, Chapter 12, Problem 1P

Thus, the F-critical value is 3.42.

Decision based on critical value:

Reject the null hypothesis H0 if, if F> F-critical value;

Otherwise fail to reject H0.

Conclusion:

Here, F(=10.23)> F-critical value (=3.42).

Therefore, the null hypothesis is rejected.

Thus, there is sufficient evidence to conclude that there is a significant difference between the means of the three groups at 5% level of significance.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Problem 3. Pricing a multi-stock option the Margrabe formula The purpose of this problem is to price a swap option in a 2-stock model, similarly as what we did in the example in the lectures. We consider a two-dimensional Brownian motion given by W₁ = (W(¹), W(2)) on a probability space (Q, F,P). Two stock prices are modeled by the following equations: dX = dY₁ = X₁ (rdt+ rdt+0₁dW!) (²)), Y₁ (rdt+dW+0zdW!"), with Xo xo and Yo =yo. This corresponds to the multi-stock model studied in class, but with notation (X+, Y₁) instead of (S(1), S(2)). Given the model above, the measure P is already the risk-neutral measure (Both stocks have rate of return r). We write σ = 0₁+0%. We consider a swap option, which gives you the right, at time T, to exchange one share of X for one share of Y. That is, the option has payoff F=(Yr-XT). (a) We first assume that r = 0 (for questions (a)-(f)). Write an explicit expression for the process Xt. Reminder before proceeding to question (b): Girsanov's theorem…
Problem 1. Multi-stock model We consider a 2-stock model similar to the one studied in class. Namely, we consider = S(1) S(2) = S(¹) exp (σ1B(1) + (M1 - 0/1 ) S(²) exp (02B(2) + (H₂- M2 where (B(¹) ) +20 and (B(2) ) +≥o are two Brownian motions, with t≥0 Cov (B(¹), B(2)) = p min{t, s}. " The purpose of this problem is to prove that there indeed exists a 2-dimensional Brownian motion (W+)+20 (W(1), W(2))+20 such that = S(1) S(2) = = S(¹) exp (011W(¹) + (μ₁ - 01/1) t) 롱) S(²) exp (021W (1) + 022W(2) + (112 - 03/01/12) t). where σ11, 21, 22 are constants to be determined (as functions of σ1, σ2, p). Hint: The constants will follow the formulas developed in the lectures. (a) To show existence of (Ŵ+), first write the expression for both W. (¹) and W (2) functions of (B(1), B(²)). as (b) Using the formulas obtained in (a), show that the process (WA) is actually a 2- dimensional standard Brownian motion (i.e. show that each component is normal, with mean 0, variance t, and that their…
The scores of 8 students on the midterm exam and final exam were as follows.   Student Midterm Final Anderson 98 89 Bailey 88 74 Cruz 87 97 DeSana 85 79 Erickson 85 94 Francis 83 71 Gray 74 98 Harris 70 91   Find the value of the (Spearman's) rank correlation coefficient test statistic that would be used to test the claim of no correlation between midterm score and final exam score. Round your answer to 3 places after the decimal point, if necessary. Test statistic: rs =
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Text book image
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Hypothesis Testing using Confidence Interval Approach; Author: BUM2413 Applied Statistics UMP;https://www.youtube.com/watch?v=Hq1l3e9pLyY;License: Standard YouTube License, CC-BY
Hypothesis Testing - Difference of Two Means - Student's -Distribution & Normal Distribution; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=UcZwyzwWU7o;License: Standard Youtube License