
The state of the oak when it is completely submerged and press against bottom of a tank so that no water is under that face, and the present of buoyant force acting on the oak.

Explanation of Solution
Section 1:
To determine: The state of the oak when it is completely submerged and press against bottom of a tank so that no water is under that face.
Introduction: The buoyant force is the force exerted by the water on the submerged body.
Explanation: The cubic oak submerged in water feels an upward exerted force exerted by the water. The exerted force on the oak by the water is known as buoyant force and this force causes the oak to float into the surface. But when the cubic oak is completely submerged under the water and press against the bottom of tank so that no water is under that face, there will be no buoyant force acting on the oak. It is because there is no water present in the bottom surface of the oak to generate buoyant force against it. Thus, the cubic oak will not float to the surface.
Conclusion: Therefore, the cubic oak will not float to the surface when it is completely submerged under the water and press against bottom of tank.
Section 2:
To determine: The present of the buoyant force acting on the cubic oak.
Introduction: The buoyant force is the force exerted by the water on the submerged body.
Explanation: The buoyant force acting on an object is equal to the weight of the water displaced by the submerged object. But when the cubic oak is completely submerged under the water and press against the bottom of tank so that no water is under that face, there will be no buoyant force acting on the oak. It is because there is no water present in the bottom surface of the oak to generate buoyant force against it.
Conclusion: Therefore, there will be no buoyant force acting on the cubic oak when it is completely submerged under the water and press against bottom of tank.
Want to see more full solutions like this?
Chapter 12 Solutions
Sears And Zemansky's University Physics With Modern Physics
- Can someone helparrow_forwardCan someone help mearrow_forward3. Four identical small masses are connected in a flat perfect square. Rank the relative rotational inertias (IA, IB, IC) about the three axes of rotation shown. Axes A and B are in the plane of the square, and axis C is perpendicular to the plane, through mass m1. ΙΑ IB m2 m1 m3 Ic m4 (a) IAarrow_forwardConsider the circuit shown in the figure below. (Assume L = 5.20 m and R2 = 440 Ω.) (a) When the switch is in position a, for what value of R1 will the circuit have a time constant of 15.4 µs? (b) What is the current in the inductor at the instant the switch is thrown to position b?arrow_forwardCan someone helparrow_forwardCan someone help mearrow_forwardA particle in a box between x=0 and x=6 has the wavefunction Psi(x)=A sin(2πx). How muchenergy is required for the electron to make a transition to Psi(x)= A’ sin(7π x/3). Draw anapproximate graph for the wavefunction. Find A and A'arrow_forwardA proton is moving with 10^8 m/s speed. Find the De Broglie wavelength associated with theproton and the frequency of that wave.arrow_forwardFind the wavelength of the photon if a (Li--) electron makes a transition from n=4 to n=3. Findthe Bohr radius for each state.arrow_forwardA photon with wavelength 3000 nm hits a stationary electron. After the collision electron isscattered to 60 degrees. Find the wavelength and frequency of the scattered photon.arrow_forwardA metal has threshold frequency 10^15. Calculate the maximum kinetic energy of the ejectedelectron if a laser beam with wavelength 1.5 10^-7 m is projected on the metal.arrow_forwardDetermine the direction of the vector V, B, or ♬ that is missing from the pair of vectors shown in each scenario. Here, u is the velocity vector of a moving positive charge, B is a constant and uniform magnetic field, and F is the resulting force on the moving charge. 1. 2. 3. B OB F 4. ↑F F 5. 怔 ↑ ↑F Answer Bank 6. ↑ TE Farrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





