
Physics
7th Edition
ISBN: 9780321929013
Author: Douglas C. Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 16P
To determine
Difference between the sound level of the explosion
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
As shown in the figure, a roller-coaster track includes a circular loop of radius R in a vertical plane. A car of mass m is released from rest at a height h above the bottom of the circular section and then moves freely along the track with negligible energy loss due to friction.
i
(a) First suppose the car barely makes it around the loop; at the top of the loop, the riders are upside down and feel weightless. Find the required height h of the release point above the bottom of the loop. (Use any variable or symbol stated above along with the following as necessary:
g.)
h =
(b) If the car is released at some point above the minimum required height, determine the amount by which the normal force on the car at the bottom of the loop exceeds the normal force on the car at the top of the loop. (Consider the moments when the car reaches the top and when it
reaches the bottom again. Use any variable or symbol stated above along with the following as necessary: g.)
NB - NT =
The normal force…
One of the more challenging elements in pairs figure skating competition is the "death spiral" (see the figure below), in which the
female figure skater, balanced on one skate, is spun in a circle by the male skater.
i
The axis of rotation of the pair is vertical and through the toe of the skate on the male skater's leg that is bent backward, the toe
being planted into the ice. During the one-armed maneuver first developed in the 1940s, the outstretched arm of the male skater
must apply a large force to support a significant fraction of the female skater's weight and also to provide her centripetal acceleration.
This force represents a danger to the structure of the wrist of the male skater.
(a) Modeling the female skater, of mass 47.0 kg, as a particle, and assuming that the combined length of the two outstretched arms
is 129 cm and that arms make an angle of 45.0° with the horizontal, what is the magnitude of the force (in N) exerted by the
male skater's wrist if each turn is…
One popular design of a household juice machine is a conical, perforated stainless steel basket 3.30 cm high with a closed bottom of diameter 8.00 cm and open top of diameter 14.40 cm that spins at 16000 revolutions per minute about a vertical axis. Solid pieces of fruit are chopped into
granules by cutters at the bottom of the spinning cone. Then the fruit granules rapidly make their way to the sloping surface where the juice is extracted to the outside of the cone through the mesh perforations. The dry pulp spirals upward along the slope to be ejected from the top of the
cone. The juice is collected in an enclosure immediately surrounding the sloped surface of the cone.
Pulp
Motor
Spinning
basket
Juice spout
(a) What centripetal acceleration does a bit of fruit experience when it is spinning with the basket at a point midway between the top and bottom?
m/s² ---Direction---
(b) Observe that the weight of the fruit is a negligible force. What is the normal force on 2.00 g of fruit at…
Chapter 12 Solutions
Physics
Ch. 12 - Prob. 1OQCh. 12 - Prob. 1QCh. 12 - Prob. 2QCh. 12 - Prob. 3QCh. 12 - When a sound wave passes from air into water, do...Ch. 12 - What evidence can you give that the speed of sound...Ch. 12 - Prob. 6QCh. 12 - How will the air temperature in a room affect the...Ch. 12 - Prob. 8QCh. 12 - Prob. 9Q
Ch. 12 - 10.A noisy truck approaches you from behind a...Ch. 12 - Prob. 11QCh. 12 - Prob. 12QCh. 12 - Traditional methods of protecting the hearing of...Ch. 12 - 14- Consider the two waves shown in Fig....Ch. 12 - Is there a Doppler shift if the source and...Ch. 12 - Prob. 16QCh. 12 - Prob. 17QCh. 12 - Prob. 1MCQCh. 12 - Prob. 2MCQCh. 12 - Prob. 3MCQCh. 12 - Prob. 4MCQCh. 12 - Prob. 5MCQCh. 12 - Prob. 6MCQCh. 12 - Prob. 7MCQCh. 12 - Prob. 8MCQCh. 12 - Prob. 9MCQCh. 12 - Prob. 10MCQCh. 12 - Prob. 11MCQCh. 12 - Prob. 12MCQCh. 12 - Prob. 13MCQCh. 12 - Prob. 1PCh. 12 - Prob. 2PCh. 12 - (a) Calculate the wavelengths in air at 20°C for...Ch. 12 - Prob. 4PCh. 12 - An ocean fishing boat is drifting just above a...Ch. 12 - Prob. 6PCh. 12 - Prob. 7PCh. 12 - What is the intensity of a sound at the pain level...Ch. 12 - What is the sound level of a sound whose intensity...Ch. 12 - Prob. 10PCh. 12 - Prob. 11PCh. 12 - Prob. 12PCh. 12 - One CD player is said to have a signal-to-noise...Ch. 12 - Prob. 14PCh. 12 - At a rock concert, a dB meter registered 130 dB...Ch. 12 - Prob. 16PCh. 12 - If the amplitude of a sound wave is made 3.5 times...Ch. 12 - Prob. 18PCh. 12 - Prob. 19PCh. 12 - Prob. 20PCh. 12 - Prob. 21PCh. 12 - Prob. 22PCh. 12 - Prob. 23PCh. 12 - Prob. 24PCh. 12 - Prob. 25PCh. 12 - Prob. 26PCh. 12 - The A string on a violin has a fundamental...Ch. 12 - Prob. 28PCh. 12 - (a) What resonant frequency would you expect from...Ch. 12 - If you were to build a pipe organ with open-tube...Ch. 12 - A tight guitar string has a frequency of 540 Hz as...Ch. 12 - Prob. 32PCh. 12 - 33. (II) An unfingered guitar string is 0.68 m...Ch. 12 - Prob. 34PCh. 12 - 35. (II) An organ is in tune at 22.0°C. By what...Ch. 12 - How far from the mouthpiece of the flute in...Ch. 12 - (a) At T= 22°C. how long must an open organ pipe...Ch. 12 - A particular organpipe can resonate at 264 Hz, 440...Ch. 12 - Prob. 39PCh. 12 - Prob. 40PCh. 12 - Prob. 41PCh. 12 - Prob. 42PCh. 12 - Prob. 43PCh. 12 - The human ear canal is approximately 2.5 cm long....Ch. 12 - Prob. 45PCh. 12 - Prob. 46PCh. 12 - A certain dog whistle operates at 23.5 kHz. while...Ch. 12 - Prob. 48PCh. 12 - A guitar string produces 3 beats/s when sounded...Ch. 12 - Prob. 50PCh. 12 - Prob. 51PCh. 12 - Prob. 52PCh. 12 - Prob. 53PCh. 12 - Prob. 54PCh. 12 - Prob. 55PCh. 12 - Prob. 56PCh. 12 - Prob. 57PCh. 12 - Prob. 58PCh. 12 - As a bat flies toward a wall at a speed of 6.0...Ch. 12 - Prob. 60PCh. 12 - Prob. 61PCh. 12 - Prob. 62PCh. 12 - Prob. 63PCh. 12 - Prob. 64PCh. 12 - Prob. 65PCh. 12 - Prob. 66PCh. 12 - Prob. 67PCh. 12 - Prob. 68PCh. 12 - Prob. 69PCh. 12 - Prob. 70PCh. 12 - Prob. 71GPCh. 12 - Prob. 72GPCh. 12 - Prob. 73GPCh. 12 - Prob. 74GPCh. 12 - Prob. 75GPCh. 12 - Prob. 76GPCh. 12 - Prob. 77GPCh. 12 - Prob. 78GPCh. 12 - Prob. 79GPCh. 12 - Prob. 80GPCh. 12 - Prob. 81GPCh. 12 - Prob. 82GPCh. 12 - Prob. 83GPCh. 12 - Prob. 84GPCh. 12 - Prob. 85GPCh. 12 - Prob. 86GPCh. 12 - Prob. 87GPCh. 12 - A bat flies toward a moth at speed 7.8 m/s while...Ch. 12 - Prob. 89GPCh. 12 - Two loudspeakers face each other at opposite ends...Ch. 12 - A sound-insulating door reduces the sound level by...Ch. 12 - Prob. 92GPCh. 12 - Prob. 93GPCh. 12 - Prob. 94GPCh. 12 - Prob. 95GPCh. 12 - Prob. 96GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
a. Draw all the isomers with molecular formula C6H12 that contain a cyclobutane ring. (Hint: There are seven.) ...
Organic Chemistry (8th Edition)
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
Why are BSL-4 suits pressurized? Why not just wear tough regular suits?
Microbiology with Diseases by Body System (5th Edition)
EVOLUTION CONNECTION The percentages of naturally occurring elements making up the human body (see Table 2.1) a...
Campbell Biology (11th Edition)
Fill in the blanks: a. The wrist is also known as the _________ region. b. The arm is also known as the _______...
Human Anatomy & Physiology (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A satellite is in a circular orbit around the Earth at an altitude of 3.88 × 106 m. (a) Find the period of the orbit. (Hint: Modify Kepler's third law so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38 × 106 m, and the mass of the Earth is 5.98 x 1024 kg.) h (b) Find the speed of the satellite. km/s (c) Find the acceleration of the satellite. m/s² toward the center of the eartharrow_forwardShown below is a waterslide constructed in the late 1800's. This slide was unique for its time due to the fact that a large number of small wheels along its length made friction negligible. Riders rode a small sled down the chute which ended with a horizontal section that caused the sled and rider to skim across the water much like a flat pebble. The chute was 9.76 m high at the top and 54.3 m long. Consider a rider and sled with a combined mass of 81.0 kg. They are pushed off the top of the slide from point A with a speed of 2.90 m/s, and they skim horizontally across the water a distance of 50 m before coming to rest. 9.76 m Engraving from Scientific American, July 1888 A (a) 20.0 m/ -54.3 m- 50.0 m (b) (a) Find the speed (in m/s) of the sled and rider at point C. 14.14 m/s (b) Model the force of water friction as a constant retarding force acting on a particle. Find the magnitude (in N) of the friction force the water exerts on the sled. 162.2 N (c) Find the magnitude (in N) of the…arrow_forwardA small object with mass 3.60 kg moves counterclockwise with constant angular speed 1.40 rad/s in a circle of radius 2.55 m centered at the origin. It starts at the point with position vector 2.551 m. Then it undergoes an angular displacement of 9.15 rad. (a) What is its new position vector? m (b) In what quadrant is the object located and what angle does its position vector make with the positive x-axis? ---Select--- ✓ at (c) What is its velocity? m/s (d) In what direction is it moving? (Give a negative angle.) ° from the +x direction. (e) What is its acceleration? m/s² (f) What total force is exerted on the object? Narrow_forward
- A spring with unstretched length of 14.3 cm has a spring constant of 4.63 N/m. The spring is lying on a horizontal surface, and is attached at one end to a vertical post. The spring can move freely around the post. The other end of the spring is attached to a puck of mass m. The puck is set into motion in a circle around the post with a period of 1.32 s. Assume the surface is frictionless, and the spring can be described by Hooke's law. (a) What is the extension of the spring as a function of m? (Assume x is in meters and m is in kilograms. Do not include units in your answer.) x = Your answer cannot be understood or graded. More Information x Find x (in meters) for the following masses. (If not possible, enter IMPOSSIBLE.) (b) m = 0.0700 kg x Use your result from part (a), and insert the given value for m. m (c) m 0.140 kg × Use your result from part (a), and insert the given value for m. m (d) m = 0.180 kg x Use your result from part (a), and insert the given value for m. m (e) m =…arrow_forwardA spacecraft in the shape of a long cylinder has a length of 100 m, and its mass with occupants is 1 860 kg. It has strayed too close to a black hole having a mass 98 times that of the Sun. The nose of the spacecraft points toward the black hole, and the distance between the nose and the center of the black hole is 10.0 km. 100 m- 10.0 km Black hole (a) Determine the total force on the spacecraft. The total force is determined by the distance from the black hole to the center of gravity of the ship which will be close to the midpoint. N (b) What is the difference in the gravitational fields acting on the occupants in the nose of the ship and on those in the rear of the ship, farthest from the black hole? (This difference in acceleration grows rapidly as the ship approaches the black hole. It puts the body of the ship under extreme tension and eventually tears it apart.) N/kg 2.56e+12arrow_forwardQ1: Find the volume of the object shown to the correct number of significant figures. ( 22.37 cm 9.10 cm 85.75 cm Q2: One Astronomical Unit (A.U.) is the average distance that the Earth orbits the Sun and is equal to 1.4960 × 1011 m. The Earth moves 2 A.U. in one year, what is this speed in SI units? ( Q3: Suppose a well known professor Raitman discovers Raitman's Law which states v = Br²/at², what are the SI units of the B parameter if r,v,a, and t are displacement, velocity, acceleration, and time, respectively? (arrow_forward
- Because you are taking physics, your friend asks you to explain the detection of gravity waves that was made by LIGO in early 2016. (See the section that discusses LIGO.) To do this, you first explain about Einstein's notion of large masses, like those of stars, causing a curvature of spacetime. (See the section on general relativity.) To demonstrate, you put a bowling ball on your bed, so that it sinks downward and creates a deep depression in the mattress. Your sheet has a checked pattern that provides a nice coordinate system, as shown in the figure below. This is an example of a large mass (the bowling ball) creating a curvature of a flat, two-dimensional surface (the mattress) into a third dimension. (Spacetime is four dimensional, so its curvature is not easily visualized.) Then, you are going to amaze your friend by projecting a marble horizontally along a section of the sheet surface that is curved downward by the bowling ball so that the marble follows a circular path, as…arrow_forwardQ6: Water in a river 1.6 km wide flows at a speed of 6.0 km h−1. A captain attempts to cross the river in his ferry at right angles to the bank but by the time it has reached the opposite bank the captain awakes and notices that it is 1.0 km downstream. If the captain wishes to take his boat directly across, what angle upstream must he point the boat assuming the boat speed remains the same? ( Q7: A student whirls a red-brown rubber stopper of mass 50 g on the end of a nylon string in a horizontal clockwise circle of diameter 1.2 m (as seen from above) at a constant speed of 8 m s-1. From an instant when the stopper is moving in a northerly direction, find its change in velocity after moving round (a) one-half of a revolution; (b) one-quarter of a revolution; (c) one-tenth of a revolution.arrow_forwardQ9: When a wedding ring is thrown horizontally out of a fifth-floor window 15 m off the ground, it lands 7.5 m out from the base of the building. Calculate the throwing speed; (a) (b) the impact velocity; (c) how long the marriage will last. Q10: A girl on a sled with a combined mass of 50.0- kg slides down a frictionless hill from rest. When she gets to the bottom of the hill, she is traveling at 3.00 m/s. How high is the hill?" m = 50.0 kg HILL v, 3.00 m/s ■ 0 (ground)arrow_forward
- This is data I collected from a Centripetal Acceleration and Force lab. Please help with interpreting the data, thanks!arrow_forwardAnswer thisarrow_forwardA coin is located 20.0 cm to the left of a converging lens. (f=13.0cm). A second, identical lens is placed to the right of the first lens, such that the image formed by the combination. has the same size and orientation as the original coin. Find the separation between the lenses.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Supersonic Speed and Shock Waves; Author: AK LECTURES;https://www.youtube.com/watch?v=HfSSi3KJZB0;License: Standard YouTube License, CC-BY