Concept explainers
(a)
The rotation rate after the glitch.
(a)
Answer to Problem 15PQ
The rotation rate after the glitch is
Explanation of Solution
From Example 12.2, it is found that the original rotation rate is
Write the expression for the rotation rate after the glitch.
Here,
It is given that the fractional increase in rotation rate is,
Solve equation (II) for
This shows that the rotation rate after the glitch is almost equal to the original rotation rate since the change is negligibly small compared to the original rate. Thus, substituting
Conclusion:
Therefore, the rotation rate after the glitch is
(b)
The new
(b)
Answer to Problem 15PQ
The new angular acceleration is
Explanation of Solution
From Example 12.2, it is found that the magnitude of original angular acceleration is
Write the expression for the angular acceleration after the glitch.
Here,
It is given that the fractional increase in angular acceleration is,
Solve equation (II) for
Conclusion:
Substitute
Therefore, the new angular acceleration is
(c)
The time taken for the pulsar to return to its pre-glitch rotation rate.
(c)
Answer to Problem 15PQ
The time taken for the pulsar to return to its pre-glitch rotation rate is
Explanation of Solution
It is obtained that the angular acceleration after the glitch is
Write the expression for the angular frequency in term of the angular acceleration.
Here,
Solve equation (VIII) for
Multiply and divide the right-hand side of equation (IX) by
Conclusion:
Substitute
Therefore, the new angular acceleration is
Want to see more full solutions like this?
Chapter 12 Solutions
EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning