![EBK BASIC CHEMISTRY](https://www.bartleby.com/isbn_cover_images/9780134987088/9780134987088_largeCoverImage.gif)
Concept explainers
(a)
Interpretation: The net ionic equation of the given reaction should be determined.
Concept Introduction: The solubility of ionic compounds is high in polar solvents such as water. This is because the ions present in it are strongly attracted to the molecules of the polar solvent. If there is any common ion in the ionic compound and the solvent, the solubility of ionic compound in that solvent decreases.
There are following rules of solubility of an ionic compound in the water:
- The salts of group 1 elements (alkali metals) are soluble. Also, salts of ammonium ion are soluble.
- The salts of nitrate ion are commonly soluble.
- The salts of chloride, bromide and iodide ions are commonly soluble. But halide salts of silver ion, lead ion and mercury ions are insoluble.
- Most of the silver salts are insoluble but silver nitrate and silver acetate are generally soluble.
- Most of the sulphate salts are soluble but calcium sulphate, barium sulphate, silver sulphate and strontium sulphate are insoluble.
- Most of the hydroxide salts are slightly soluble but that of group 1 elements are soluble. Hydroxide salts of
transition metals and aluminium ion are insoluble. Therefore, iron hydroxide, aluminium hydroxide and cobalt hydroxide are insoluble. - The sulphides of transition metals are strongly insoluble such as cadmium sulphide, iron sulphide, zinc sulphide and silver sulphide. The salts of arsenic, antimony, bismuth and lead are also insoluble.
- Carbonates are insoluble.
- Chromates are insoluble.
- Phosphates are also insoluble such as calcium phosphate and silver phosphate.
- Fluorides are also insoluble such as barium fluoride, magnesium fluoride and lead fluoride.
(b)
Interpretation: The net ionic equation of the given reaction should be determined.
Concept Introduction: The solubility of ionic compounds is high in polar solvents such as water. This is because the ions present in it are strongly attracted to the molecules of the polar solvent. If there is any common ion in the ionic compound and the solvent, the solubility of ionic compound in that solvent decreases.
There are following rules of solubility of an ionic compound in the water:
- The salts of group 1 elements (alkali metals) are soluble. Also, salts of ammonium ion are soluble.
- The salts of nitrate ion are commonly soluble.
- The salts of chloride, bromide and iodide ions are commonly soluble. But halide salts of silver ion, lead ion and mercury ions are insoluble.
- Most of the silver salts are insoluble but silver nitrate and silver acetate are generally soluble.
- Most of the sulphate salts are soluble but calcium sulphate, barium sulphate, silver sulphate and strontium sulphate are insoluble.
- Most of the hydroxide salts are slightly soluble but that of group 1 elements are soluble. Hydroxide salts of transition metals and aluminium ion are insoluble. Therefore, iron hydroxide, aluminium hydroxide and cobalt hydroxide are insoluble.
- The sulphides of transition metals are strongly insoluble such as cadmium sulphide, iron sulphide, zinc sulphide and silver sulphide. The salts of arsenic, antimony, bismuth and lead are also insoluble.
- Carbonates are insoluble.
- Chromates are insoluble.
- Phosphates are also insoluble such as calcium phosphate and silver phosphate.
- Fluorides are also insoluble such as barium fluoride, magnesium fluoride and lead fluoride.
(c)
Interpretation: The net ionic equation of the given reaction should be determined.
Concept Introduction: The solubility of ionic compounds is high in polar solvents such as water. This is because the ions present in it are strongly attracted to the molecules of the polar solvent. If there is any common ion in the ionic compound and the solvent, the solubility of ionic compound in that solvent decreases.
There are following rules of solubility of an ionic compound in the water:
- The salts of group 1 elements (alkali metals) are soluble. Also, salts of ammonium ion are soluble.
- The salts of nitrate ion are commonly soluble.
- The salts of chloride, bromide and iodide ions are commonly soluble. But halide salts of silver ion, lead ion and mercury ions are insoluble.
- Most of the silver salts are insoluble but silver nitrate and silver acetate are generally soluble.
- Most of the sulphate salts are soluble but calcium sulphate, barium sulphate, silver sulphate and strontium sulphate are insoluble.
- Most of the hydroxide salts are slightly soluble but that of group 1 elements are soluble. Hydroxide salts of transition metals and aluminium ion are insoluble. Therefore, iron hydroxide, aluminium hydroxide and cobalt hydroxide are insoluble.
- The sulphides of transition metals are strongly insoluble such as cadmium sulphide, iron sulphide, zinc sulphide and silver sulphide. The salts of arsenic, antimony, bismuth and lead are also insoluble.
- Carbonates are insoluble.
- Chromates are insoluble.
- Phosphates are also insoluble such as calcium phosphate and silver phosphate.
- Fluorides are also insoluble such as barium fluoride, magnesium fluoride and lead fluoride.
(d)
Interpretation: The net ionic equation of the given reaction should be determined.
Concept Introduction: The solubility of ionic compounds is high in polar solvents such as water. This is because the ions present in it are strongly attracted to the molecules of the polar solvent. If there is any common ion in the ionic compound and the solvent, the solubility of ionic compound in that solvent decreases.
There are following rules of solubility of an ionic compound in the water:
- The salts of group 1 elements (alkali metals) are soluble. Also, salts of ammonium ion are soluble.
- The salts of nitrate ion are commonly soluble.
- The salts of chloride, bromide and iodide ions are commonly soluble. But halide salts of silver ion, lead ion and mercury ions are insoluble.
- Most of the silver salts are insoluble but silver nitrate and silver acetate are generally soluble.
- Most of the sulphate salts are soluble but calcium sulphate, barium sulphate, silver sulphate and strontium sulphate are insoluble.
- Most of the hydroxide salts are slightly soluble but that of group 1 elements are soluble. Hydroxide salts of transition metals and aluminium ion are insoluble. Therefore, iron hydroxide, aluminium hydroxide and cobalt hydroxide are insoluble.
- The sulphides of transition metals are strongly insoluble such as cadmium sulphide, iron sulphide, zinc sulphide and silver sulphide. The salts of arsenic, antimony, bismuth and lead are also insoluble.
- Carbonates are insoluble.
- Chromates are insoluble.
- Phosphates are also insoluble such as calcium phosphate and silver phosphate.
- Fluorides are also insoluble such as barium fluoride, magnesium fluoride and lead fluoride.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 12 Solutions
EBK BASIC CHEMISTRY
- 3. Propose a synthesis for the following transformation. Do not draw an arrow-pushing mechanism below, but make sure to draw the product of each proposed step (3 points). CN + En CNarrow_forward3) Propagation of uncertainty. Every measurement has uncertainty. In this problem, we'll evaluate the uncertainty in every step of a titration of potassium hydrogen phthalate (a common acid used in titrations, abbreviated KHP, formula CsH5KO4) with NaOH of an unknown concentration. The calculation that ultimately needs to be carried out is: concentration NaOH 1000 x mass KHP × purity KHP molar mass KHP x volume NaOH Measurements: a) You use a balance to weigh 0.3992 g of KHP. The uncertainty is ±0.15 mg (0.00015 g). b) You use a buret to slowly add NaOH to the KHP until it reaches the endpoint. It takes 18.73 mL of NaOH. The uncertainty of the burst is 0.03 mL.. c) The manufacturer states the purity of KHP is 100%±0.05%. d) Even though we don't think much about them, molar masses have uncertainty as well. The uncertainty comes from the distribution of isotopes, rather than random measurement error. The uncertainty in the elements composing KHP are: a. Carbon: b. Hydrogen: ±0.0008…arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- How would you use infrared spectroscopy to distinguish between the following pairs of constitutional isomers? (a) CH3C=CCH3 || and CH3CH2C=CH (b) CH3CCH=CHCH3 and CH3CCH2CH=CH2 Problem 12-41 The mass spectrum (a) and the infrared spectrum (b) of an unknown hydrocarbon are shown. Propose as many structures as you can. (a) 100 Relative abundance (%) 80 60 60 40 200 20 (b) 100 Transmittance (%) 10 20 20 80- 60- 40- 20 40 60 80 100 120 140 m/z 500 4000 3500 3000 2500 2000 1500 Wavenumber (cm-1) 1000arrow_forwardPropagation of uncertainty. You have a stock solution certified by the manufacturer to contain 150.0±0.03 µg SO42-/mL. You would like to dilute it by a factor of 100 to obtain 1.500 µg/mL. Calculate the uncertainty in the two methods of dilution below. Use the following uncertainty values for glassware: Glassware Uncertainty (assume glassware has been calibrated and treat the values below as random error) 1.00 mL volumetric pipet 0.01 mL 10.00 mL volumetric pipet 0.02 mL 100.00 mL volumetric flask 0.08 mL Transfer 10.00 mL with a volumetric pipet and dilute it to 100 mL with a volumetric flask. Then take 10.00 mL of the resulting solution and dilute it a second time with a 100 mL flask. 2. Transfer 1.00 mL with a volumetric pipet and dilute it to 100 mL with a volumetric flask.arrow_forwardDraw all resonance structures for the following ion: CH₂ Draw all resonance structures on the canvas by choosing buttons from the Tools (for bonds), Atoms, and Advanced Template toolbars, including charges where needed. The single bond is active by default. 2D ד CONT HD EXP CON ? 1 [1] Α 12 Marvin JS by Chemaxon A DOO H C N Br I UZ OSPFarrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399425/9781337399425_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)