Concept explainers
(a)
Interpretation:
The goniometer setting to observe the ka1 lines for Fe (1.76
Concept introduction:
Bragg’s diffraction condition will be used for the calculation of goniometer setting. This formula is given as-
Where,
n = integer
λ= wavelength
d = interplanar distance of crystal
θ= angle
![Check Mark](/static/check-mark.png)
Answer to Problem 12.9QAP
Value of Goniometer setting in terms of 2θ when crystal is topaz-
For Fe = 80.9°
For Se = 42.9°
For Ag = 20.9°
Explanation of Solution
Mathematical expression for the Bragg’s diffraction condition is given below -
Goniometer setting value in terms of 2θ when a diffracting crystal is a topaz-
Value of d for topaz = 1.356
The wavelength of ka1 lines for Fe = 1.76
n =1
Put this value in equation (1):
Wavelength of ka1 lines for Se = 0.992
n =1
Put this value in equation (1)
Wavelength of ka1 lines for Ag = 0.497
n =1
Put this value in equation (1)-
(b)
Interpretation:
The goniometer setting to observe the ka1 lines for Fe (1.76
Concept introduction:
Bragg’s diffraction condition will be used for the calculation of goniometer setting. This formula is given as-
Where,
n = integer
λ= wavelength
d = interplanar distance of crystal
θ= angle
![Check Mark](/static/check-mark.png)
Answer to Problem 12.9QAP
Value of goniometer setting in terms of 2θ when crystal is LiF-
For Fe = 51.8°
For Se = 28.4°
For Ag = 14.02°
Explanation of Solution
Formula is given below-
Goniometer setting value in terms of 2θ when diffracting crystal is LiF-
Value of d for LiF = 2.014
Wavelength of ka1 lines for Fe = 1.76
n =1
Put this value in equation (1)-
Wavelength of ka1 lines for Se = 0.992
n =1
Put this value in equation (1)-
Wavelength of ka1 lines for Ag = 0.497
n =1
Put this value in equation (1)-
(c)
Interpretation:
The goniometer setting to observe the ka1 lines for Fe (1.76
Concept introduction:
Bragg’s diffraction condition will be used for the calculation of goniometer setting. This formula is given as-
Where,
n = integer
λ= wavelength
d = interplanar distance of crystal
θ= angle
![Check Mark](/static/check-mark.png)
Answer to Problem 12.9QAP
Value of Goniometer setting in terms of 2θ when a crystal is NaCl-
For Fe = 36.4°
For Se = 20.3°
For Ag = 10.00°
Explanation of Solution
The formula is given below-
Goniometer setting value in terms of 2θ when a diffracting crystal is NaCl-
Value of d for NaCl = 2.820
The wavelength of ka1 lines for Fe = 1.76
n =1
Put this value in equation (1)-
Wavelength of ka1 lines for Se = 0.992
n =1
Put this value in equation (1)-
Wavelength of ka1 lines for Ag = 0.497
n =1
Put this value in equation (1)-
Want to see more full solutions like this?
Chapter 12 Solutions
Principles of Instrumental Analysis, 6th Edition
- Indicate whether the following two statements are correct or not:- The S8 heterocycle is the origin of a family of compounds- Most of the elements that give rise to stable heterocycles belong to group d.arrow_forwardcould someone draw curly arrow mechanism for this question pleasearrow_forwardIn the phase diagram of quartz (SiO2), indicate what happens as the pressure increases.arrow_forward
- Show work. Don't give Ai generated solutionarrow_forwardNonearrow_forwardTransmitance 3. Which one of the following compounds corresponds to this IR spectrum? Point out the absorption band(s) that helped you decide. OH H3C OH H₂C CH3 H3C CH3 H3C INFRARED SPECTRUM 0.8- 0.6 0.4- 0.2 3000 2000 1000 Wavenumber (cm-1) 4. Consider this compound: H3C On the structure above, label the different types of H's as A, B, C, etc. In table form, list the labeled signals, and for each one state the number of hydrogens, their shifts, and the splitting you would observe for these hydrogens in the ¹H NMR spectrum. Label # of hydrogens splitting Shift (2)arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)