
Concept explainers
(a)
Interpretation:
The liquid among the following pair that has a higher vapor pressure at a given temperature is to be determined.
Concept introduction:
Intermolecular forces operate between the molecules so changes with change in the phase and effects with physical properties of the substance. In intermolecular forces, the bond is formed between two molecules with partial charges that are present relatively far away from each other. The types of intermolecular forces are as follows:
1. Ion-dipole: Ion-dipole forces are the attractive forces that exist between an ion and a polar molecule.
2. Hydrogen bond: Hydrogen bonding is the attractive forces that exist between the molecule with a hydrogen atom bonded to an electronegative atom like fluorine, nitrogen, and oxygen of one molecule and an electronegative atom of another molecule.
3. Dipole-dipole: Dipole-dipole is the attractive forces that exist between two polar molecules that have a permanent dipole.
4. Ion-induced dipole: Ion-induced dipole is the attractive forces that exist between the ion and a nonpolar molecule.
5. Dipole-induced dipole: Dipole-induced dipole is the attractive forces that exist between a polar and a nonpolar molecule.
6. Dispersion forces: In dispersion forces, a temporary dipole is generated on one molecule that further induces a temporary dipole on the molecule adjacent to it. The temporary dipole results in the attraction between opposite charges and dispersion forces exist in the molecule. All the atoms and molecules exhibit dispersion forces.
The vapor pressure of a compound decreases when the strength of intermolecular forces present between the molecules. The vaporization of a liquid occurs when the intermolecular forces between the molecules break and the molecules are free to vaporize. The increasing order of strength is as follows:
(b)
Interpretation:
The liquid among the following pair that has a higher vapor pressure at a given temperature is to be determined.
Concept introduction:
Intermolecular forces operate between the molecules so changes with change in the phase and effects with physical properties of the substance. In intermolecular forces, the bond is formed between two molecules with partial charges that are present relatively far away from each other. The types of intermolecular forces are as follows:
1. Ion-dipole: Ion-dipole forces are the attractive forces that exist between an ion and a polar molecule.
2. Hydrogen bond: Hydrogen bonding is the attractive forces that exist between the molecule with a hydrogen atom bonded to an electronegative atom like fluorine, nitrogen, and oxygen of one molecule and an electronegative atom of another molecule.
3. Dipole-dipole: Dipole-dipole is the attractive forces that exist between two polar molecules that have a permanent dipole.
4. Ion-induced dipole: Ion-induced dipole is the attractive forces that exist between the ion and a nonpolar molecule.
5. Dipole-induced dipole: Dipole-induced dipole is the attractive forces that exist between a polar and a nonpolar molecule.
6. Dispersion forces: In dispersion forces, a temporary dipole is generated on one molecule that further induces a temporary dipole on the molecule adjacent to it. The temporary dipole results in the attraction between opposite charges and dispersion forces exist in the molecule. All the atoms and molecules exhibit dispersion forces.
The vapor pressure of a compound decreases when the strength of intermolecular forces present between the molecules. The vaporization of a liquid occurs when the intermolecular forces between the molecules break and the molecules are free to vaporize. The increasing order of strength is as follows:
(c)
Interpretation:
The liquid among the following pair that has the higher vapor pressure at a given temperature is to be determined.
Concept introduction:
Intermolecular forces operate between the molecules so changes with change in the phase and effects with physical properties of the substance. In intermolecular forces, the bond is formed between two molecules with partial charges that are present relatively far away from each other. The types of intermolecular forces are as follows:
1. Ion-dipole: Ion-dipole forces are the attractive forces that exist between an ion and a polar molecule.
2. Hydrogen bond: Hydrogen bonding is the attractive forces that exist between the molecule with a hydrogen atom bonded to an electronegative atom like fluorine, nitrogen, and oxygen of one molecule and an electronegative atom of another molecule.
3. Dipole-dipole: Dipole-dipole is the attractive forces that exist between two polar molecules that have a permanent dipole.
4. Ion-induced dipole: Ion-induced dipole is the attractive forces that exist between the ion and a nonpolar molecule.
5. Dipole-induced dipole: Dipole-induced dipole is the attractive forces that exist between a polar and a nonpolar molecule.
6. Dispersion forces: In dispersion forces, a temporary dipole is generated on one molecule that further induces a temporary dipole on the molecule adjacent to it. The temporary dipole results in the attraction between opposite charges and dispersion forces exist in the molecule. All the atoms and molecules exhibit dispersion forces.
The vapor pressure of a compound decreases when the strength of intermolecular forces present between the molecules. The vaporization of a liquid occurs when the intermolecular forces between the molecules break and the molecules are free to vaporize. The increasing order of strength is as follows:

Want to see the full answer?
Check out a sample textbook solution
Chapter 12 Solutions
Student Solutions Manual For Silberberg Chemistry: The Molecular Nature Of Matter And Change With Advanced Topics
- DATA: Standard Concentration (caffeine) mg/L Absorbance Reading 10 0.322 20 0.697 40 1.535 60 2.520 80 3.100arrow_forwardIn what position will p-Toluidine be nitrated and what will the compound be called.arrow_forwardIn what position will 4-methylbenzonitrile be nitrated and what will the compound be called.arrow_forward
- In what position will benzenesulfonic acid be nitrated?arrow_forwardIf compound A reacts with an excess of methyl iodide and then heated with aqueous Ag₂O, indicate only the major products obtained. Draw their formulas. A Harrow_forwardExplanation Check 1:01AM Done 110 Functional Groups Identifying and drawing hemiacetals and acetals In the drawing area below, create a hemiacetal with 1 ethoxy group, 1 propoxy group, and a total of 9 carbon atoms. Click and drag to start drawing a structure. ✓ $ 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use Sarrow_forward
- Write the systematic name of each organic molecule: CI structure CI CI Explanation CI ठ CI Check B ☐ 188 F1 80 name F2 F3 F4 F5 F6 60 F7 2arrow_forwardWrite the systematic name of each organic molecule: structure i HO OH Explanation Check name ☐ ☐arrow_forwardX 5 Check the box under each molecule that has a total of five ẞ hydrogens. If none of the molecules fit this description, check the box underneath the table. CI Br Br Br 0 None of these molecules have a total of five ẞ hydrogens. Explanation Check esc F1 F2 tab caps lock fn Q @2 A W # 3 OH O OH HO © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility IK F7 F7 F8 TA F9 F10 & 6 28 * ( > 7 8 9 0 80 F3 O F4 KKO F5 F6 S 64 $ D % 25 R T Y U பட F G H O J K L Z X C V B N M H control option command P H F11 F12 + || { [ command optionarrow_forward
- An open vessel containing water stands in a laboratory measuring 5.0 m x 5.0 m x 3.0 m at 25 °C ; the vapor pressure (vp) of water at this temperature is 3.2 kPa. When the system has come to equilibrium, what mass of water will be found in the air if there is no ventilation? Repeat the calculation for open vessels containing benzene (vp = 13.1 kPa) and mercury (vp = 0.23 Pa)arrow_forwardEvery chemist knows to ‘add acid to water with constant stirring’ when diluting a concentrated acid in order to keep the solution from spewing boiling acid all over the place. Explain how this one fact is enough to prove that strong acids and water do not form ideal solutions.arrow_forwardThe predominant components of our atmosphere are N₂, O₂, and Ar in the following mole fractions: χN2 = 0.780, χO2 = 0.21, χAr = 0.01. Assuming that these molecules act as ideal gases, calculate ΔGmix, ΔSmix, and ΔHmix when the total pressure is 1 bar and the temperature is 300 K.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





