Principles of Foundation Engineering
Principles of Foundation Engineering
9th Edition
ISBN: 9780357684832
Author: Das
Publisher: Cengage Learning US
bartleby

Concept explainers

Question
Book Icon
Chapter 12, Problem 12.1P

a.

To determine

Sketch the variation of pile load with respect to depth.

a.

Expert Solution
Check Mark

Explanation of Solution

Given information:

The variation of frictional resistance per unit area f(z) with respect to depth for first pile is given in the Figure.

The variation of pile load Q(z) with respect to depth for second pile is given in the Figure.

The applied load (Q) is 1,500 kN.

Length of the pile is 20 m.

Number of piles is 2.

Diameter of the pile (d) is 500 mm.

Calculation:

The pile load Q(z) decreases linearly with the soils 1 and 2 due to uniform f(z).

Find the perimeter of the pile (p) as follows:

p=π×d

Substitute 500 mm for d.

p=π×500mm=π×500mm×103m1mm=1.571m

Find the variation of pile load (dQ(z)) using the relation:

dQ(z)=pf(z)dz (1)

Here, dz is the depth.

Within soil 1:

From given Figure, the value of f(z) is 40kN/m2 for soil 1.

Substitute 1.571 m for p, 40kN/m2 for f(z), and 10 m for dz in Equation (1).

dQ(z)=1.571m×40kN/m2×10m=628.4kN

Find the pile load within soil 1:

Q(z=10m)=Q+dQ(z)

Substitute 1,500 kN for Q and 628.4kN for dQ(z).

Q(z=10m)=1,500kN628.4kN=871.6kN

Within soil 2:

From given Figure, the value of f(z) is 70kN/m2 for soil 2.

Substitute 1.571 m for p, 70kN/m2 for f(z), and 5 m for dz in Equation (1).

dQ(z)=1.571m×70kN/m2×5m=549.9kN

Find the pile load within soil 2:

Q(z=15m)=Q(z=10m)+dQ(z)

Substitute 871.6kN for Q(z=10m) and 549.9kN for dQ(z).

Q(z=15m)=871.6kN549.9kN=321.7kN

Plot the variation of pile load Qz with respect to depth.

b.

To determine

Sketch the variation of frictional resistance per unit area with respect to depth.

b.

Expert Solution
Check Mark

Explanation of Solution

Calculation:

The pile load Q(z) varies linearly within the soils 1 and 2. Therefore, the value of f(z) is constant within the two soils.

Find the frictional resistance per unit area (f(z)) using the relation:

f(z)=1pdQ(z)dz (2)

Within soil 1:

From given Figure, the value of dQ(z) is 1,500kN800kN for soil 1.

Substitute 1.571 m for p, 1,500kN800kN for dQ(z), and 10 m for dz in Equation (2).

f(z)=11.571m1,500kN800kN10m=44.6kN/m2

Within soil 2:

From given Figure, the value of dQ(z) is 800kN300kN for soil 1.

Substitute 1.571 m for p, 800kN300kN for dQ(z), and 5 m for dz in Equation (2).

f(z)=11.571m800kN300kN5m=63.7kN/m2

Sketch the variation of pile load Qz with respect to depth and the variation of frictional resistance per unit area (f(z)) with respect to depth as shown in Figure 1.

Principles of Foundation Engineering, Chapter 12, Problem 12.1P

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
5.2 Assume that you are an observer standing at a point along a three-lane roadway. All vehicles in lane 1 are traveling at 30 mi/h, all vehicles in lane 2 are traveling at 45 mi/h, and all vehicles in lane 3 are traveling at 60 mi/h. There is also a constant spacing of 0.5 mile between vehicles. If you collect spot speed data for all vehicles as they cross your observation point, for 30 minutes, what will be the time-mean speed and space-mean speed for this traffic stream?
There are 20 cars traveling at constant speeds on a 1 mile long ring track and the cars can pass each other freely. On the track 25% of the cars are traveling at 20 mph, 50% of the cars are traveling 10 mph, and the remaining 25% of the cars are traveling at an unknown speed. It was known that the space mean speed of all the cars on the track is 20 mph. (a) What is the speed that the remaining 25% of cars are traveling at? (b) If an observer standing on the side of the track counted the number and measured the speed of all cars that passed her for one hour, what is the time-mean speed of all the cars the observer counted? (c) What is the flow rate measured by the observer? (d) What is the car density on the track? Does density times space mean speed equal flow rate?
e t a S t 1 d ? f a V f 1 2.20 A driver is traveling at 90 mi/h down a 3% grade on good, wet pavement. An accident investigation team noted that braking skid marks started 410 ft before a parked car was hit at an estimated 45 mi/h. Ignoring air resistance, and using theoretical stopping distance, what was the braking efficiency of the car? 2.21 A small truck is to be driven down a 4% grade at 70 mi/h. The coefficient of road adhesion is 0.95, and it is known that the braking efficiency is 80% when the truck is empty and decreases by one percentage point for every 100 lb of cargo added. Ignoring aerodynamic resistance, if the driver wants the truck to be able to achieve a minimum theoretical stopping distance of 275 ft from the point of brake application, what is the maximum amount of cargo (in pounds) that can be carried?

Chapter 12 Solutions

Principles of Foundation Engineering

Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning