Us Solutions Manual To Accompany Elements Of Physical Chemistry 7e
Us Solutions Manual To Accompany Elements Of Physical Chemistry 7e
7th Edition
ISBN: 9780198802259
Author: ATKINS
Publisher: Oxford University Press
Question
Book Icon
Chapter 12, Problem 12.14P
Interpretation Introduction

Interpretation:

The equilibrium constant for the dissociation of I2 at 500K has to be calculated.

Concept Introduction:

The dissociation of I2 is given below.

  I22I

The equilibrium constant for the dissociation of I2 can be calculated using the following formula.

  K=(qI,mΘNA)2(qI2,mΘNA)eEdisRT

Where,

    K=equilibriumconstantqI,mΘ=partitioncoefficientofIqI2,mΘ=partitioncoefficientofI2NA=avogadronumberEdis=dissociationenergyR=universalgasconstantT=temperature

The expression for the translational partition function is given below.

  qT=(2πmkT)32Vh3

Where,

    qT=translationalpartitionfunctionm=molecularmassT=temperatureh=plank'sconstantV=volumeatstandardconditionsk=boltzmannconstant

The expression for rotational partition function is given below.

  qR=kTσhB

Where,

    qR=rotationalpartitionfunctionk=boltzmannconstantT=temperatureh=plank'sconstantσ=symmetrynumberB=rotationalconstant

The expression for vibrational partition function is given below.

  qV=11ehνkT

Where,

    qV=vibrationalpartitionfunctionh=plank'sconstantk=boltzmannconstantT=temperatureν=vibrationalfrequency

Expert Solution & Answer
Check Mark

Answer to Problem 12.14P

The equilibrium constant for the dissociation of I2 at 500K is calculated as 1.615×10-20.

Explanation of Solution

The equilibrium constant for the dissociation of I2 can be calculated using the following formula.

  K=(qI,mΘNA)2(qI2,mΘNA)eEdisRT

The partition functions of I and I2 can be written as the product of partition function for each mode of vibration.

The translational partition function for I can be calculated as follows,

Given,

    m=127×1.6606×1027kgT=500Kh=6.626×1034JsV=volumeatstandardconditionsk=1.38×1023J/K

  qIT=(2πmkT)32Vh3={2×3.14×(127×1.6606×1027kg)×1.38×1023J/K×500K}32V(6.626×1034Js)3={2×3.14×(127×1.6606×1027kg)×1.38×1023J/K×500K}32V(6.626×1034Js)3=V×2.97×1027

The translational partition function for I2 can be calculated as follows,

Given,

    m=2×127×1.6606×1027kgT=500Kh=6.626×1034JsV=volumeatstandardconditionsk=1.38×1023J/K

  qI2T=(2πmkT)32Vh3={2×3.14×(2×127×1.6606×1027kg)×1.38×1023J/K×500K}32V(6.626×1034Js)3={2×3.14×(127×1.6606×1027kg)×1.38×1023J/K×500K}32V(6.626×1034Js)3=V×8.42×1027

Rotational partition function for I2 can be calculated using following formula.

Given,

    k=1.38×1023J/KT=500Kh=6.626×1034Jsσ=2forsymmetricallinearrotorB=3.73m1×3×108m/s

qI2R=kTσhB=(1.38×1023J/K)×500K2×(6.626×1034Js)×(3.73m1×3×108m/s)=4.63×103

Vibrational partition function for I2 can be calculated using following formula.

Given,

    h=6.626×1034Jsk=1.38×1023J/KT=500Kν=1λc=21.4m1×3×108m/s

  qV=11e(6.626×1034Js).(21.4m1×3×108m/s)(1.38×1023J/K)(500K)=1.622×103

Therefore the equilibrium constant can be calculated by substituting these valus in the equation as follows,

Given,

    Dissociationenergy=Edis=151kJ/mol=1.51×105J/molqI,mΘ=qIT=V×2.97×1027qI2,mΘ=qI2T×qI2R×qV=(V×8.42×1027)×(4.63×103)×(1.622×103)=V×6.32×1033V=RTPP=105PaR=8.314J/K

  K=(qI,mΘNA)2(qI2,mΘNA)eEdisRT=(qI,mΘ)2NA(qI2,mΘ)eEdisRT=(V×2.97×1027)2NA×(V×6.32×1033)eEdisRT=RT(2.97×1027)2P×NA×6.32×1033eEdisRT=(8.314J/K)×(500K)×(2.97×1027)2105Pa×(6.022×1023)×6.32×1033e1.51×105J/mol(8.314J/K)(500K)=1.615×10-20

The equilibrium constant for the dissociation of I2 at 500K is calculated as 1.615×10-20.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
How to determine if this is N- ethylsaccharin or O-ethylsaccharin or a mixture of both based on chemical shifts.
None
Please correct answer and don't use hand rating and don't use Ai solution
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY