
Interpretation:
The mole fraction of urea present in the two given solutions at equilibrium should be calculated.
Concept Introduction:
Molarity (M): The concentration for solutions is expressed in terms of molarity. Molarity is number of moles of the solute present in liter of the solution.
Moles: One mole is equivalent to the mass of the substance consists same number of units equal to the atoms present in
Mole fraction: Concentration of the solution can also expressed by mole fraction. Mole fraction is equal to moles of the component divided by total moles of the mixture.

Answer to Problem 12.132QP
The mole fraction of urea present in
The mole fraction of urea present in
The mole fraction of urea present in both beakers at equilibrium is
Explanation of Solution
Given: Beaker 1
Beaker 2
In order to calculate the mole fraction of urea first the mole of urea and the water moles in two given beaker should be determined.
Calculate moles of urea:
Calculate moles of water:
Calculate mole fraction of urea in each beaker:
Mole fraction of urea in beaker 1is as follows,
Mole fraction of urea in beaker 2is as follows,
At equilibrium the mole fractions of water in both beakers will be equal. According to Raoult’s Law the vapor pressure of water in each beaker will also be equal.
The number of moles transferred between the beakers in order to attain equilibrium is y.
Calculate mole fractions of urea at equilibrium:
In beaker 1
In beaker 2
The mole fraction of urea present in the two given solutions at equilibrium was calculated.
Want to see more full solutions like this?
Chapter 12 Solutions
EBK CHEMISTRY
- The reaction Q(g) + R(g) → Z(l) is shown to be exothermic. Which of the following is true concerning the reactionarrow_forwardWhich of the following has the largest standard molar entropy, S° (298.15 K) He H2 NaCl KBr Hgarrow_forwardWhich of the following is true for a particular reaction if ∆G° is -40.0 kJ/mol at 290 K and –20.0 kJ/mol at 390 K?arrow_forward
- Choose the major product of the reaction with correct regio- and stereochemistry. Br2 H₂O O "Br Br & O 'Br OH Br 吡 O OH OH Br "OH Brarrow_forwardSelect the major product of the following reaction. & Br (CH)CONa (CH₂),COH 0 OC(CH) O &arrow_forwardDraw the products of the hydrolysis reaction between the ester molecule and water. Determine the products of the following reaction.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning



