Differential Equations with Boundary-Value Problems
9th Edition
ISBN: 9781337632515
Author: Dennis G. Zill
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 10RE
Find the temperature u(x, t) in the infinite plate of width 2L shown in Figure 12.R.4 if the initial temperature is u0 throughout. [Hint: u(x, 0) = u0 −L < x < L is an even function of x.]
FIGURE 12.R.4 Infinite plate in Problem 10
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Jamal wants to save $48,000 for a down payment on a home. How much will he need to invest in an
account with 11.8% APR, compounding daily, in order to reach his goal in 10 years? Round to the
nearest dollar.
r
nt
Use the compound interest formula, A (t) = P(1 + 1)".
An account is opened with an intial deposit of $7,500 and earns 3.8% interest compounded semi-
annually. Round all answers to the nearest dollar.
a. What will the account be worth in 10 years? $
b. What if the interest were compounding monthly? $
c. What if the interest were compounded daily (assume 365 days in a year)? $
Kyoko has $10,000 that she wants to invest. Her bank has several accounts to choose from. Her goal is
to have $15,000 by the time she finishes graduate school in 7 years. To the nearest hundredth of a
percent, what should her minimum annual interest rate be in order to reach her goal assuming they
compound daily? (Hint: solve the compound interest formula for the intrerest rate. Also, assume there
are 365 days in a year)
%
Chapter 12 Solutions
Differential Equations with Boundary-Value Problems
Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...
Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 1726 classify the given partial...Ch. 12.1 - Prob. 18ECh. 12.1 - In Problems 1726 classify the given partial...Ch. 12.1 - Prob. 20ECh. 12.1 - In Problems 1726 classify the given partial...Ch. 12.1 - Prob. 22ECh. 12.1 - Prob. 23ECh. 12.1 - Prob. 24ECh. 12.1 - Prob. 25ECh. 12.1 - Prob. 26ECh. 12.1 - In Problems 27 and 28 show that the given partial...Ch. 12.1 - In Problems 27 and 28 show that the given partial...Ch. 12.1 - Verify that each of the products u = XY in (3),...Ch. 12.1 - Prob. 30ECh. 12.1 - Prob. 31ECh. 12.1 - Prob. 32ECh. 12.2 - In Problems 16 a rod of length L coincides with...Ch. 12.2 - In Problems 16 a rod of length L coincides with...Ch. 12.2 - In Problems 16 a rod of length L coincides with...Ch. 12.2 - In Problems 16 a rod of length L coincides with...Ch. 12.2 - In Problems 16 a rod of length L coincides with...Ch. 12.2 - In Problems 16 a rod of length L coincides with...Ch. 12.2 - In Problems 710 a string of length L coincides...Ch. 12.2 - In Problems 710 a string of length L coincides...Ch. 12.2 - In Problems 710 a string of length L coincides...Ch. 12.2 - Prob. 10ECh. 12.2 - In Problems 11 and 12 set up the boundary-value...Ch. 12.2 - In Problems 11 and 12 set up the boundary-value...Ch. 12.3 - In Problems 1 and 2 solve the heat equation (1)...Ch. 12.3 - In Problems 1 and 2 solve the heat equation (1)...Ch. 12.3 - Find the temperature u(x, t) in a rod of length L...Ch. 12.3 - Solve Problem 3 if L = 2 and f(x)={x,0x10,1x2.Ch. 12.3 - Suppose heat is lost from the lateral surface of a...Ch. 12.3 - Solve Problem 5 if the ends x = 0 and x = L are...Ch. 12.3 - A thin wire coinciding with the x-axis on the...Ch. 12.3 - Find the temperature u(x, t) for the...Ch. 12.4 - In Problems 16 solve the wave equation (1) subject...Ch. 12.4 - In Problems 16 solve the wave equation (1) subject...Ch. 12.4 - In Problems 16 solve the wave equation (1) subject...Ch. 12.4 - In Problems 16 solve the wave equation (1) subject...Ch. 12.4 - In Problems 16 solve the wave equation (1) subject...Ch. 12.4 - In Problems 16 solve the wave equation (1) subject...Ch. 12.4 - In Problems 710 a string is tied to the x-axis at...Ch. 12.4 - In Problems 710 a string is tied to the x-axis at...Ch. 12.4 - In Problems 710 a string is tied to the x-axis at...Ch. 12.4 - In Problems 710 a string is tied to the x-axis at...Ch. 12.4 - Prob. 11ECh. 12.4 - A model for the motion of a vibrating string whose...Ch. 12.4 - Prob. 13ECh. 12.4 - Prob. 14ECh. 12.4 - Prob. 15ECh. 12.4 - Prob. 16ECh. 12.4 - The transverse displacement u(x, t) of a vibrating...Ch. 12.4 - Prob. 19ECh. 12.4 - The vertical displacement u(x, t) of an infinitely...Ch. 12.4 - Prob. 21ECh. 12.4 - Prob. 22ECh. 12.4 - Prob. 23ECh. 12.4 - Prob. 24ECh. 12.5 - In Problems 110 solve Laplaces equation (1) for a...Ch. 12.5 - In Problems 1–10 solve Laplace’s equation (1) for...Ch. 12.5 - In Problems 110 solve Laplaces equation (1) for a...Ch. 12.5 - In Problems 110 solve Laplaces equation (1) for a...Ch. 12.5 - In Problems 110 solve Laplaces equation (1) for a...Ch. 12.5 - In Problems 110 solve Laplaces equation (1) for a...Ch. 12.5 - In Problems 110 solve Laplaces equation (1) for a...Ch. 12.5 - In Problems 1–10 solve Laplace’s equation (1) for...Ch. 12.5 - In Problems 110 solve Laplaces equation (1) for a...Ch. 12.5 - Prob. 10ECh. 12.5 - In Problems 11 and 12 solve Laplaces equation (1)...Ch. 12.5 - In Problems 11 and 12 solve Laplaces equation (1)...Ch. 12.5 - Prob. 13ECh. 12.5 - Prob. 14ECh. 12.5 - In Problems 15 and 16 use the superposition...Ch. 12.5 - In Problems 15 and 16 use the superposition...Ch. 12.5 - Prob. 18ECh. 12.5 - Solve the Neumann problem for a rectangle:...Ch. 12.5 - Prob. 20ECh. 12.6 - In Problems 1-12 proceed as in Example 1 to solve...Ch. 12.6 - In Problems 1-12 proceed as in Example 1 to solve...Ch. 12.6 - Prob. 3ECh. 12.6 - In Problems 1-12 proceed as in Example 1 to solve...Ch. 12.6 - In Problems 1-12 proceed as in Example 1 to solve...Ch. 12.6 - Prob. 6ECh. 12.6 - Prob. 7ECh. 12.6 - Prob. 8ECh. 12.6 - In Problems 1-12 proceed as in Example 1 to solve...Ch. 12.6 - In Problems 1-12 proceed as in Example 1 to solve...Ch. 12.6 - Prob. 11ECh. 12.6 - Prob. 12ECh. 12.6 - Prob. 13ECh. 12.6 - In Problems 13-16 proceed as in Example 2 to solve...Ch. 12.6 - Prob. 15ECh. 12.6 - In Problems 13-16 proceed as in Example 2 to solve...Ch. 12.6 - Prob. 17ECh. 12.6 - Prob. 18ECh. 12.6 - Prob. 19ECh. 12.6 - Prob. 20ECh. 12.7 - In Example 1 find the temperature u(x, t) when the...Ch. 12.7 - Prob. 2ECh. 12.7 - Find the steady-state temperature for a...Ch. 12.7 - Prob. 4ECh. 12.7 - Prob. 5ECh. 12.7 - Prob. 6ECh. 12.7 - Prob. 7ECh. 12.7 - Prob. 8ECh. 12.7 - Prob. 9ECh. 12.7 - Prob. 10ECh. 12.8 - In Problems 1 and 2 solve the heat equation (1)...Ch. 12.8 - Prob. 2ECh. 12.8 - Prob. 3ECh. 12.8 - In Problems 3 and 4 solve the wave equation (2)...Ch. 12.8 - Prob. 5ECh. 12.8 - Prob. 6ECh. 12 - Use separation of variables to find product...Ch. 12 - Use separation of variables to find product...Ch. 12 - Find a steady-state solution (x) of the...Ch. 12 - Give a physical interpretation for the boundary...Ch. 12 - At t = 0 a string of unit length is stretched on...Ch. 12 - Prob. 6RECh. 12 - Find the steady-state temperature u(x, y) in the...Ch. 12 - Find the steady-state temperature u(x, y) in the...Ch. 12 - Prob. 9RECh. 12 - Find the temperature u(x, t) in the infinite plate...Ch. 12 - Prob. 11RECh. 12 - Solve the boundary-value problem 2ux2+sinx=ut, 0 ...Ch. 12 - Prob. 13RECh. 12 - The concentration c(x, t) of a substance that both...Ch. 12 - Prob. 15RECh. 12 - Solve Laplaces equation for a rectangular plate...Ch. 12 - Prob. 17RECh. 12 - Prob. 18RECh. 12 - Prob. 19RECh. 12 - If the four edges of the rectangular plate in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Test the claim that a student's pulse rate is different when taking a quiz than attending a regular class. The mean pulse rate difference is 2.7 with 10 students. Use a significance level of 0.005. Pulse rate difference(Quiz - Lecture) 2 -1 5 -8 1 20 15 -4 9 -12arrow_forwardThere are three options for investing $1150. The first earns 10% compounded annually, the second earns 10% compounded quarterly, and the third earns 10% compounded continuously. Find equations that model each investment growth and use a graphing utility to graph each model in the same viewing window over a 20-year period. Use the graph to determine which investment yields the highest return after 20 years. What are the differences in earnings among the three investment? STEP 1: The formula for compound interest is A = nt = P(1 + − − ) n², where n is the number of compoundings per year, t is the number of years, r is the interest rate, P is the principal, and A is the amount (balance) after t years. For continuous compounding, the formula reduces to A = Pert Find r and n for each model, and use these values to write A in terms of t for each case. Annual Model r=0.10 A = Y(t) = 1150 (1.10)* n = 1 Quarterly Model r = 0.10 n = 4 A = Q(t) = 1150(1.025) 4t Continuous Model r=0.10 A = C(t) =…arrow_forwardThe following ordered data list shows the data speeds for cell phones used by a telephone company at an airport: A. Calculate the Measures of Central Tendency from the ungrouped data list. B. Group the data in an appropriate frequency table. C. Calculate the Measures of Central Tendency using the table in point B. D. Are there differences in the measurements obtained in A and C? Why (give at least one justified reason)? I leave the answers to A and B to resolve the remaining two. 0.8 1.4 1.8 1.9 3.2 3.6 4.5 4.5 4.6 6.2 6.5 7.7 7.9 9.9 10.2 10.3 10.9 11.1 11.1 11.6 11.8 12.0 13.1 13.5 13.7 14.1 14.2 14.7 15.0 15.1 15.5 15.8 16.0 17.5 18.2 20.2 21.1 21.5 22.2 22.4 23.1 24.5 25.7 28.5 34.6 38.5 43.0 55.6 71.3 77.8 A. Measures of Central Tendency We are to calculate: Mean, Median, Mode The data (already ordered) is: 0.8, 1.4, 1.8, 1.9, 3.2, 3.6, 4.5, 4.5, 4.6, 6.2, 6.5, 7.7, 7.9, 9.9, 10.2, 10.3, 10.9, 11.1, 11.1, 11.6, 11.8, 12.0, 13.1, 13.5, 13.7, 14.1, 14.2, 14.7, 15.0, 15.1, 15.5,…arrow_forward
- A tournament is a complete directed graph, for each pair of vertices x, y either (x, y) is an arc or (y, x) is an arc. One can think of this as a round robin tournament, where the vertices represent teams, each pair plays exactly once, with the direction of the arc indicating which team wins. (a) Prove that every tournament has a direct Hamiltonian path. That is a labeling of the teams V1, V2,..., Un so that vi beats Vi+1. That is a labeling so that team 1 beats team 2, team 2 beats team 3, etc. (b) A digraph is strongly connected if there is a directed path from any vertex to any other vertex. Equivalently, there is no partition of the teams into groups A, B so that every team in A beats every team in B. Prove that every strongly connected tournament has a directed Hamiltonian cycle. Use this to show that for any team there is an ordering as in part (a) for which the given team is first. (c) A king in a tournament is a vertex such that there is a direct path of length at most 2 to any…arrow_forwardUse a graphing utility to find the point of intersection, if any, of the graphs of the functions. Round your result to three decimal places. (Enter NONE in any unused answer blanks.) y = 100e0.01x (x, y) = y = 11,250 ×arrow_forwardhow to construct the following same table?arrow_forward
- The following is known. The complete graph K2t on an even number of vertices has a 1- factorization (equivalently, its edges can be colored with 2t - 1 colors so that the edges incident to each vertex are distinct). This implies that the complete graph K2t+1 on an odd number of vertices has a factorization into copies of tK2 + K₁ (a matching plus an isolated vertex). A group of 10 people wants to set up a 45 week tennis schedule playing doubles, each week, the players will form 5 pairs. One of the pairs will not play, the other 4 pairs will each play one doubles match, two of the pairs playing each other and the other two pairs playing each other. Set up a schedule with the following constraints: Each pair of players is a doubles team exactly 4 times; during those 4 matches they see each other player exactly once; no two doubles teams play each other more than once. (a) Find a schedule. Hint - think about breaking the 45 weeks into 9 blocks of 5 weeks. Use factorizations of complete…arrow_forward. The two person game of slither is played on a graph. Players 1 and 2 take turns, building a path in the graph. To start, Player 1 picks a vertex. Player 2 then picks an edge incident to the vertex. Then, starting with Player 1, players alternate turns, picking a vertex not already selected that is adjacent to one of the ends of the path created so far. The first player who cannot select a vertex loses. (This happens when all neighbors of the end vertices of the path are on the path.) Prove that Player 2 has a winning strategy if the graph has a perfect matching and Player 1 has a winning strategy if the graph does not have a perfect matching. In each case describe a strategy for the winning player that guarantees that they will always be able to select a vertex. The strategy will be based on using a maximum matching to decide the next choice, and will, for one of the cases involve using the fact that maximality means no augmenting paths. Warning, the game slither is often described…arrow_forwardLet D be a directed graph, with loops allowed, for which the indegree at each vertex is at most k and the outdegree at each vertex is at most k. Prove that the arcs of D can be colored so that the arcs entering each vertex must have distinct colors and the arcs leaving each vertex have distinct colors. An arc entering a vertex may have the same color as an arc leaving it. It is probably easiest to make use of a known result about edge coloring. Think about splitting each vertex into an ‘in’ and ‘out’ part and consider what type of graph you get.arrow_forward
- 3:56 wust.instructure.com Page 0 Chapter 5 Test Form A of 2 - ZOOM + | Find any real numbers for which each expression is undefined. 2x 4 1. x Name: Date: 1. 3.x-5 2. 2. x²+x-12 4x-24 3. Evaluate when x=-3. 3. x Simplify each rational expression. x²-3x 4. 2x-6 5. x²+3x-18 x²-9 6. Write an equivalent rational expression with the given denominator. 2x-3 x²+2x+1(x+1)(x+2) Perform the indicated operation and simplify if possible. x²-16 x-3 7. 3x-9 x²+2x-8 x²+9x+20 5x+25 8. 4.x 2x² 9. x-5 x-5 3 5 10. 4x-3 8x-6 2 3 11. x-4 x+4 x 12. x-2x-8 x²-4 ← -> Copyright ©2020 Pearson Education, Inc. + 5 4. 5. 6. 7. 8. 9. 10. 11. 12. T-97arrow_forwardplease work out more details give the solution.arrow_forwardProblem #5 Suppose you flip a two sided fair coin ("heads" or "tails") 8 total times. a). How many ways result in 6 tails and 2 heads? b). How many ways result in 2 tails and 6 heads? c). Compare your answers to part (a) and (b) and explain in a few sentences why the comparison makes sense.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning

Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY