Engineering Fundamentals: An Introduction to Engineering
Engineering Fundamentals: An Introduction to Engineering
6th Edition
ISBN: 9780357391273
Author: Saeed Moaveni
Publisher: Cengage Learning US
Question
Book Icon
Chapter 12, Problem 10P
To determine

Create a Table of relative resistance of the metals given in the Table 12.1 in the textbook.

Expert Solution & Answer
Check Mark

Answer to Problem 10P

The table has been created as below.

MetalResistance (Ω)Relative Resistance to Copper
Aluminum17.011.64
Brass66.86.44
Copper10.371
Gold14.71.42
Iron59.95.78
Lead13212.73
Nickel50.84.9
Platinum63.86.15
Silver9.80.95
Tin706.75
Tungsten33.23.2
Zinc35.583.43

Explanation of Solution

Given data:

Refer to Table 12.1 in the textbook, which shows the Electrical Resistance for 1 ft long Wire, made of Various Metals Having a Diameter of 1 mil at 20°C.

The relative resistance of the wire of “1 ft long and 1 mil diameter of aluminum wire” to “1 ft long and 1 mil diameter of aluminum” is calculated as,

=17.01 Ω10.37 Ω=1.64

Formula used:

Formula to calculate the relative resistance of the material is given by,

RR=RmetalRcopper (1)

Heer,

Rmetal is the resistance of the metal.

Rcopper is the resistance of the copper.

Resistance of the copper (Rcopper) is standard scale to measure the relative resistance of the any metal.

Calculation:

Refer to Table 12.1 in the textbook, it shows the relative resistance of 1 ft long wires with 1 mil diameter size..

Substitute 17.01 for Rmetal and 10.37Ω for Rcopper to find relative resistance of aluminum,

RR=17.01Ω10.37Ω=1.64

Therefore, the relative resistance of the aluminum is 1.64.

Substitute 66.8 for Rmetal and 10.37Ω for Rcopper in equation (1) to find relative resistance of brass metal,

RR=66.8Ω10.37Ω=6.44

Therefore, the relative resistance of the brass is 6.44.

Substitute 10.37 for Rmetal and 10.37Ω for Rcopper in equation (1) to find relative resistance of copper metal,

RR=10.37Ω10.37Ω=1.00

Therefore, the relative resistance of the copper metal is 1.00.

Substitute 14.7 for Rmetal and 10.37Ω for Rcopper in equation (1) to find relative resistance of gold metal,

RR=14.7Ω10.37Ω=1.42

Therefore, the relative resistance of the gold is 1.42.

Substitute 59.9 for Rmetal and 10.37Ω for Rcopper in equation (1) to find relative resistance of iron metal,

RR=59.9Ω10.37Ω=5.78

Therefore, the relative resistance of the iron is 5.78.

Substitute 132 for Rmetal and 10.37Ω for Rcopper in equation (1) to find relative resistance of lead metal,

RR=132Ω10.37Ω=12.73

Therefore, the relative resistance of the lead is 12.73.

Substitute 50.8 for Rmetal and 10.37Ω for Rcopper in equation (1) to find relative resistance of nickel metal,

RR=50.8Ω10.37Ω=4.90

Therefore, the relative resistance of the nickel is 4.90.

Substitute 63.8 for Rmetal and 10.37Ω for Rcopper in equation (1) to find relative resistance of platinum metal,

RR=63.8Ω10.37Ω=6.15

Therefore, the relative resistance of the platinum is 6.15.

Substitute 9.8 for Rmetal and 10.37Ω for Rcopper in equation (1) to find relative resistance of silver metal,

RR=9.8Ω10.37Ω=0.95

Therefore, the relative resistance of the silver is 0.95.

Substitute 70 for Rmetal and 10.37Ω for Rcopper in equation (1) to find relative resistance of tin metal,

RR=70Ω10.37Ω=6.75

Substitute 33.2 for Rmetal and 10.37Ω for Rcopper in equation (1) to find relative resistance of tungsten metal,

RR=33.2Ω10.37Ω=3.20

Therefore, the relative resistance of the tungsten is 3.20.

Substitute 35.58 for Rmetal and 10.37Ω for Rcopper in equation (1) to find relative resistance of Zinc metal,

RR=35.58Ω10.37Ω=3.43

Therefore, the relative resistance of the Zinc is 3.43.

Conclusion:

Hence the Table for relative resistance of the metals is has been created.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q.2 The girder AB as shown in Fig. 2 has a span of 18m and supports concentrated loads located as shown. Determine the plastic moment capacity MP and the plastic collapse load Pc for the given load conditions. Use either Equilibrium drVirtual Work method in your solution. [30 marks] 5P 5P C d B 6 m 6 m 6 m 18 m Fig. 2 - Prismatic Continuous
337 kN -Weld -25° 6 mm PROBLEM 1.33 A steel pipe of 300 mm outer diameter is fabricated from 6 mm thick plate by welding along a helix which forms an angle of 25° with a plane perpendicular to the axis of the pipe. Knowing that the maximum allowable normal and shearing stresses in directions respectively normal and tangential to the weld are σ = 50 MPa and 7 = 30 MPa, determine the magnitude P of the largest axial force that can be applied to the pipe.
2.2 Identify the Zero Force Members for the truss shown. Show your final answer with a sketch and mark the zero force bars with "0". D 700 N 500 N
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Residential Construction Academy: House Wiring (M...
Civil Engineering
ISBN:9781285852225
Author:Gregory W Fletcher
Publisher:Cengage Learning
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,