Create a Table of relative resistance of the metals given in the Table 12.1 in the textbook.
Answer to Problem 10P
The table has been created as below.
Metal | Resistance | Relative Resistance to Copper |
Aluminum | 17.01 | 1.64 |
Brass | 66.8 | 6.44 |
Copper | 10.37 | 1 |
Gold | 14.7 | 1.42 |
Iron | 59.9 | 5.78 |
Lead | 132 | 12.73 |
Nickel | 50.8 | 4.9 |
Platinum | 63.8 | 6.15 |
Silver | 9.8 | 0.95 |
Tin | 70 | 6.75 |
Tungsten | 33.2 | 3.2 |
Zinc | 35.58 | 3.43 |
Explanation of Solution
Given data:
Refer to Table 12.1 in the textbook, which shows the Electrical Resistance for 1 ft long Wire, made of Various Metals Having a Diameter of 1 mil at
The relative resistance of the wire of “1 ft long and 1 mil diameter of aluminum wire” to “1 ft long and 1 mil diameter of aluminum” is calculated as,
Formula used:
Formula to calculate the relative resistance of the material is given by,
Heer,
Resistance of the copper
Calculation:
Refer to Table 12.1 in the textbook, it shows the relative resistance of 1 ft long wires with 1 mil diameter size..
Substitute 17.01 for
Therefore, the relative resistance of the aluminum is
Substitute 66.8 for
Therefore, the relative resistance of the brass is
Substitute 10.37 for
Therefore, the relative resistance of the copper metal is 1.00.
Substitute 14.7 for
Therefore, the relative resistance of the gold is 1.42.
Substitute 59.9 for
Therefore, the relative resistance of the iron is 5.78.
Substitute 132 for
Therefore, the relative resistance of the lead is 12.73.
Substitute 50.8 for
Therefore, the relative resistance of the nickel is 4.90.
Substitute 63.8 for
Therefore, the relative resistance of the platinum is 6.15.
Substitute 9.8 for
Therefore, the relative resistance of the silver is 0.95.
Substitute 70 for
Substitute 33.2 for
Therefore, the relative resistance of the tungsten is 3.20.
Substitute 35.58 for
Therefore, the relative resistance of the Zinc is 3.43.
Conclusion:
Hence the Table for relative resistance of the metals is has been created.
Want to see more full solutions like this?
Chapter 12 Solutions
Engineering Fundamentals
- Please use virtual work/ force method as I am struggling with that particular concept.arrow_forwardThe anchor from Part A can also fail in shear in the circular head, as shown (Figure 3). What is the minimum thickness tt required for the head to support the allowed load PallowPallow = 15 kNkN if the material fails in shear at τfailτfail = 30 MPaMPa ? Use a factor of safety F.S.F.S. = 2.2.arrow_forwardFind three sites on the www related to reinforced concrete (other than thoselinked to the Syllabus). For each site, provide a written description of the sitecontent and the site’s URL.arrow_forward
- Visit the course web page on Canvas. Find the document where the advantagesand disadvantages of reinforced concrete are listed. Provide at least three additionaladvantages and three additional disadvantages. Justify your answer.arrow_forwardMax. Flow rate from catchment area=0.25 m³/s drain to road (one side road) having roof section with longitudinal slope %1, n=0.016, cross-section slope %1, 24 m width of road, 0.15 m curb stone. Gutter data: 7 cm high of water. 1-What is the capacity (or Max. flow rate) for this road? 2- With 0.5 m3 /s is it flood? 3-Whate is the clear zone in case Q=0.5 m³/s?arrow_forwardEstimate Q inlet for curb inlet in sump, If y=5 cm, L=0.5 m and %13 clogging.arrow_forward
- 3020,220 30 30m 120 Design inlet system for the road in figure below. C=0.93, i=65 mm/hr, Gutter data: y max.=9 cm, n=0.016, k=0.38, slope %1, Z=40, (space-bar-2 cm). Estimate inlet type. elevation in points (a-82.1, b=82 m), in point t rain water depth in point f>3 cm in u turn >5.5 cm. Sag point in S. Drow curbstone DATE DATE 5 100 Median strip 10 %1 d 72arrow_forwardEstimate Q inlet for grate inlet in sump, If w=0.4 m, L-0.5 m, y=5 cm and opining space 3 cm and bar width= 2.5 cm %12 clogging.arrow_forward12:39 You HD ⚫2 February, 10:33 am GE342 Physical Geodesy Quiz 1 Tuesday 30th January 2024 Duration 1 hour Ill. 68% Question 1 A spherical triangle ABC has an angle B = 90° and sides a = 50° and b = 70°. Find A, C and c (9) Question 2 Given two cities: Los Angeles (34°15′ N, 118°15' W) and Jakarta (06°20'S, 106°10'E). a. Find the length of the great circle arc connecting the two cities. (7) b. What would be the azimuth setting for an airplane flying from L.A to Jakarta? (6) c. What would be the azimuth setting for an airplane flying from Jakarta to L.A? (7) 29 ← Replyarrow_forward
- 11:49 Question 1 a. What is Geodesy? (2) b. What is physical geodesy. (2) .ill 73% c. Write short notes on the linkages physical geodesy has with each of the following: 8 marks Oceanography i. ii. Geophysics iii. iv. Geology Hydrology d. Define the following surfaces and draw a sketch showing the relationship between them. Geoid, reference ellipsoid, topography. (2+2+2) e. The following points had their ellipsoidal heights measured, compute their orthometric heights given the geoidal undulations: (2) Name TP5 ZQ135 Latitude Longitude Ellipsoid hgt. -12.61179 28.18421 1263.995 -12.80345 28.23022 1215.166 Geoidal undulations -6.715 -6.684 Question 2 (8+6+6) The following coordinates were given on a spherical earth with a radius of 6378000m, find a. The shortest distance between the points b. The azimuth from A to B c. The azimuth from B to A Latitude Longitude A 52°21'14"N 93°48'25″E B 52°24'18"N 93°42'30"E Question 3 (20) Two points lie on the same latitude as shown below: Point…arrow_forwardHome prob.: ·A Simply Supported beam, with cross section (250x60. a & Span 6.00m. It is carrying the req'd.. prestressing force for :- und.l. of 20 kN/m - Compu ic.service (a) Bottom fiber Stress equal to zero under full load with max (b1 Top fiber Stress equal to zero under D.L. plus prestressin force Cat initial stage)arrow_forwardAn oil pipeline and a 1.200 m^3 rigid air tank are connected to each other by a manometer, as shown in the figure. The tank contains 15 kg of air at 80°C. Assume the pressure in the oil pipeline to remain constant and the air volume in the manometer to be negligible relative to the volume of the tank. Determine the change in Δh when the temperature in the tank drops to 20°C.arrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningResidential Construction Academy: House Wiring (M...Civil EngineeringISBN:9781285852225Author:Gregory W FletcherPublisher:Cengage Learning