bartleby

Videos

Textbook Question
Book Icon
Chapter 11.RP, Problem 1RP

Find all the real eigen-values and eigen-functions for the given eigen value problem.

a. y + 6 y + λ y = 0 ; y ( 0 ) = 0 , y ( 1 ) = 0

b. y + λ y = 0 ; y ( 0 ) = 0 , y ( π ) + 2 y ( π ) = 0

Expert Solution
Check Mark
To determine

(a)

To find:

All the real eigenvalues and eigenfunctions for the eigenvalue problem y+6y+λy=0; y(0)=0, y(1)=0.

Answer to Problem 1RP

Solution:

The real eigenvalues are λn=9+n2π2 and eigenfunctions are yn=Cne3xsin(nπx), here, n=1,2,3,....

Explanation of Solution

Calculation:

The given eigenvalue problem is,

y+6y+λy=0        ...(1)

The boundary values are given as,

y(0)=0, y(1)=0.

The auxiliary equation of equation (1) can be written as,

r2+6r+λ=0  ...(2)

The nature of roots of equation (2) will depends upon the value of λ.

Consider, λ<0

Let λ=μ2

Equation (2) become,

r2+6rμ2=0

Roots of the above equation will be given as,

r=6±36+4μ22=6±29+μ22=3±9+μ2

The solution is given as follows.

y=c1e(3+9+μ2)x+c2e(39+μ2)x(3)

Since, y(0)=0, thus

0=c1e(3+9+μ2)0+c2e(39+μ2)00=c1e0+c2e00=c1+c2c1=c2

Again, since y(1)=0 thus,

0=c1e(3+9+μ2)1+c2e(39+μ2)10=c1e3e9+μ2c1e3e9+μ20=c1e3(e9+μ2e9+μ2)c1=0

Thus, c2=0

This implies, there is no solution.

Now, consider, λ=0

Equation (2) become,

r2+6r=0r(r+6)=0

Roots of the above equation will be given as,

r=0,6

The solution is given as follows.

y=c1e6x+c2(4)

Since, y(0)=0, thus

y=c1e6×0+c20=c1e0+c20=c1+c2c1=c2

Again, since y(1)=0 thus,

0=c1e6(1)+c20=c1e6c10=c1(e61)c1=0

Thus, c2=0

This implies, there is no solution.

Now, consider, λ>0

Let λ=μ2

Equation (2) become,

r2+6r+μ2=0

Roots of the above equation will be given as,

r=6±364μ22=6±2iμ292=3±iμ29

The solution is given as follows.

y=c1e(3+iμ29)x+c2e(3iμ29)x=c1e3x(cosμ29x+isinμ29x)+c2e3x(cosμ29xisinμ29x)=(c1+c2)e3xcosμ29x+i(c1c2)e3xsinμ29x=C1e3xcosμ29x+C2e3xsinμ29x(5)

Since, y(0)=0, thus

0=C1e3(0)cosμ29(0)+C2e3(0)sinμ29(0)0=C1e0cos(0)+C2e0sin(0)C1=0

Again, since y(1)=0 thus,

0=(0)e3(1)cosμ29(1)+C2e3(1)sinμ29(1)C2e3sinμ29=0

Since, C20.

Thus,

sinμ29=0μ29=nπμ29=n2π2μ2=9+n2π2

Here, n=1,2,3,...

The real eigenvalues are as follows,

λn=μn2=9+n2π2

Substitute C1=0 in equation (5) as follows,

y=(0)e3xcosμ29x+C2e3xsinμ29x=C2e3xsinμ29x

The real eigenfunctions are given as follows,

yn=Cne3xsin(nπx)

Here, n=1,2,3,...

Therefore, the real eigenvalues are λn=9+n2π2 and eigenfunctions are yn=Cne3xsin(nπx), here, n=1,2,3,....

Conclusion:

Hence, the real eigenvalues are λn=9+n2π2 and eigenfunctions are yn=Cne3xsin(nπx), here, n=1,2,3,....

Expert Solution
Check Mark
To determine

(b)

To find:

All the real eigenvalues and eigenfunctions for the eigenvalue problem y+λy=0; y(0)=0, y(π)+2y(π)=0.

Answer to Problem 1RP

Solution:

The real eigenvalues are λn=μn2, here, tanμnπ=2μn, n=1,2,3,... and the eigenfunctions are yn=Cnsin(μnx), n=1,2,3,....

Explanation of Solution

Calculation:

The given eigenvalue problem is,

y+λy=0 (6)

The boundary values are given as,

y(0)=0, y(π)+2y(π)=0.

The auxiliary equation of equation (6) can be written as,

r2+λ=0 (7)

The nature of roots of equation (7) will depends upon the value of λ.

Consider, λ<0

Let λ=μ2

Equation (7) become,

r2μ2=0

Roots of the above equation will be given as,

r=±μ

The solution is given as follows.

y=c1eμx+c2eμx=c1(coshμx+sinhμx)+c2(coshμxsinhμx)=(c1+c2)coshμx+(c1c2)sinhμx=C1coshμx+C2sinhμx(8)

Since, y(0)=0, thus

0=C1coshμ(0)+C2sinhμ(0)0=C1(1)+C2(0)C1=0

Again, since y(π)+2y(π)=0 thus,

C1cosh(μπ)+C2sinh(μπ)+2(C1μsinh(μπ)+C2μcosh(μπ))=0(0)cosh(μπ)+C2sinh(μπ)+2((0)μsinh(μπ)+C2μcosh(μπ))=0C2sinh(μπ)+2C2μcosh(μπ)=0C2(sinh(μπ)+2μcosh(μπ))=0

Since, C20

Thus,

sinh(μπ)+2μcosh(μπ)=0tanh(μπ)=2μ

This implies, there is only one solution, having positive value to this problem and it is denoted by μ0 and it has only one negative eigenvalue λ0=μ2.

Here, tanh(μ0π)=2μ0

Substitute 0 for C1 in equation (8) as follows.

y=(0)coshμx+C2sinhμx=C2sinhμx

Thus, corresponding eigenfunctions are,

y0=C0sinhμ0x

Now, consider, λ=0

Equation (7) become,

r2+0=0

Roots of the above equation will be given as,

r=0,0

The solution is given as follows.

y=c1x+c2(9)

Since, y(0)=0, thus

0=c1(0)+c2c2=0

Again, since y(π)+2y(π)=0 thus,

c1(π)+c2+2(c1)=0

since, c2=0

c1(π)+(0)+2(c1)=0c1(2+π)=0c1=0

This implies, there is no solution.

Now, consider, λ>0

Let λ=μ2

Equation (7) become,

r2+μ2=0

Roots of the above equation will be given as,

r=μ2=±μi

The solution is given as follows.

y=c1eμix+c2eμix=c1(cosμx+isinμx)+c2(cosμxisinμx)=(c1+c2)cosμx+i(c1c2)sinμx=C1cosμx+C2sinμx(10)

Since, y(0)=0, thus

0=C1cosμ(0)+C2sinμ(0)0=C1cos(0)+0C1=0

Again, since y(π)+2y(π)=0 thus,

C1cosμπ+C2sinμπ+2(C1μsinμπ+μC2cosμπ)=0(0)cosμπ+C2sinμπ+2((0)μsinμπ+C2μcosμπ)=0C2sinμπ+2C2μcosμπ=0C2(sinμπ+2μcosμπ)=0

Since, C20.

Thus,

sinμπ+2μcosμπ=0tanμπ=2μ

The eigenvalues are as follows,

λn=μn2tanμnπ=2μn

Here, n=1,2,3,...

Substitute 0 for C1 in equation (10) as follows,

y=(0)cosμx+C2sinμx=C2sinμx

The real eigenfunctions are given as follows,

yn=Cnsin(μnx)

Here, n=1,2,3,...

Therefore, the real eigenvalues are λn=μn2, here, tanμnπ=2μn, n=1,2,3,... and the eigenfunctions are yn=Cnsin(μnx), n=1,2,3,....

Conclusion:

Hence, the real eigenvalues are λn=μn2, here, tanμnπ=2μn, n=1,2,3,... and the eigenfunctions are yn=Cnsin(μnx), n=1,2,3,....

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Which degenerate conic is formed when a double cone is sliced through the apex by a plane parallel to the slant edge of the cone?
For the problem below, what are the possible solutions for x? Select all that apply. 2 x²+8x +11 = 0 x2+8x+16 = (x+4)² = 5 1116
For the problem below, what are the possible solutions for x? Select all that apply. x² + 12x - 62 = 0 x² + 12x + 36 = 62 + 36 (x+6)² = 98

Chapter 11 Solutions

Fundamentals Of Differential Equations And Boundary Value Problems Plus Mylab Math With Pearson Etext -- Title-specific Access Card Package (7th ... Fundamentals Of Differential Equations)

Ch. 11.2 - Prob. 11ECh. 11.2 - In Problems 1-12, determine the solutions, if any,...Ch. 11.2 - Prob. 13ECh. 11.2 - In Problems 13-20, find all the real eigenvalues...Ch. 11.2 - In Problems 13-20, find all the real eigenvalues...Ch. 11.2 - Prob. 16ECh. 11.2 - In Problems 13-20, find all the real eigenvalues...Ch. 11.2 - In Problems 13-20, find all the real eigenvalues...Ch. 11.2 - In Problems 13-20, find all the real eigenvalues...Ch. 11.2 - In Problems 13-20, find all the real eigenvalues...Ch. 11.2 - In Problems 23-26, find all the real values of ...Ch. 11.2 - In Problems 23-26, find all the real values of ...Ch. 11.2 - In Problems 23-26, find all the real values of ...Ch. 11.2 - In Problems 23-26, find all the real values of ...Ch. 11.3 - In Problem 1-6, convert the given equation into...Ch. 11.3 - In Problem 1-6, convert the given equation into...Ch. 11.3 - Prob. 3ECh. 11.3 - In Problem 1-6, convert the given equation into...Ch. 11.3 - Prob. 5ECh. 11.3 - In Problems 1-6, convert the given equation into...Ch. 11.3 - Prob. 7ECh. 11.3 - In problem 7-11, determine whether the given...Ch. 11.3 - In problem 7-11, determine whether the given...Ch. 11.3 - Prob. 10ECh. 11.3 - Prob. 11ECh. 11.3 - Prob. 12ECh. 11.3 - Let be an eigenvalue and a corresponding...Ch. 11.3 - Prob. 15ECh. 11.3 - Show that if =u+iv is an eigenfunction...Ch. 11.3 - In Problems 17 -24, a determine the normalized...Ch. 11.3 - In Problems 17 -24, a determine the normalized...Ch. 11.3 - In Problems 17 -24, a determine the normalized...Ch. 11.3 - In Problems 17 -24, a determine the normalized...Ch. 11.3 - In Problems 17 -24, a determine the normalized...Ch. 11.3 - In Problems 17 -24, a determine the normalized...Ch. 11.3 - Prob. 25ECh. 11.3 - Prove that the linear differential operator...Ch. 11.4 - Prob. 1ECh. 11.4 - Prob. 2ECh. 11.4 - Prob. 3ECh. 11.4 - Prob. 4ECh. 11.4 - Prob. 5ECh. 11.4 - Prob. 6ECh. 11.4 - In Problems 7-10, find theadjointoperator and its...Ch. 11.4 - Prob. 8ECh. 11.4 - Prob. 9ECh. 11.4 - In Problems 7-10, find the adjoint operator and...Ch. 11.4 - Prob. 11ECh. 11.4 - Prob. 12ECh. 11.4 - Prob. 13ECh. 11.4 - Prob. 14ECh. 11.4 - Prob. 15ECh. 11.4 - Prob. 16ECh. 11.4 - Prob. 17ECh. 11.4 - Prob. 18ECh. 11.4 - Prob. 19ECh. 11.4 - Prob. 20ECh. 11.4 - Prob. 21ECh. 11.4 - Prob. 22ECh. 11.4 - Prob. 23ECh. 11.4 - Prob. 24ECh. 11.4 - Prob. 25ECh. 11.4 - Prob. 26ECh. 11.4 - Prob. 27ECh. 11.4 - Prob. 28ECh. 11.4 - Prob. 29ECh. 11.5 - Prob. 1ECh. 11.5 - In Problems 1-8, find a formal eigenfunction...Ch. 11.5 - Prob. 3ECh. 11.5 - In Problems 1-8, find a formal eigenfunction...Ch. 11.5 - Prob. 5ECh. 11.5 - Prob. 6ECh. 11.5 - Prob. 7ECh. 11.5 - Prob. 8ECh. 11.5 - In Problem 9-14, find a formal eigenfunction...Ch. 11.5 - In Problem 9-14, find a formal eigenfunction...Ch. 11.5 - Prob. 11ECh. 11.5 - Prob. 12ECh. 11.5 - In Problem 9-14, find a formal eigenfunction...Ch. 11.5 - Derive the solution to Problem 12 given in...Ch. 11.6 - Prob. 1ECh. 11.6 - Prob. 2ECh. 11.6 - Prob. 3ECh. 11.6 - Prob. 4ECh. 11.6 - Prob. 5ECh. 11.6 - In Problems 1-10, find the Greens function G(x,s)...Ch. 11.6 - Prob. 7ECh. 11.6 - Prob. 8ECh. 11.6 - Prob. 9ECh. 11.6 - Prob. 10ECh. 11.6 - In problems 11 -20, use Greens functions to solve...Ch. 11.6 - In problems 11 -20, use Greens functions to solve...Ch. 11.6 - In Problems 11-20, use Greens functions to solve...Ch. 11.6 - In Problems 11-20, use Greens functions to solve...Ch. 11.6 - In Problems 11-20, use Greens functions to solve...Ch. 11.6 - In Problems 11-20, use Greens functions to solve...Ch. 11.6 - In Problems 11-20, use Greens functions to solve...Ch. 11.6 - Derive a formula using a Greens function for the...Ch. 11.6 - Prob. 22ECh. 11.6 - Prob. 23ECh. 11.6 - Prob. 24ECh. 11.6 - Prob. 25ECh. 11.6 - Prob. 26ECh. 11.6 - Prob. 31ECh. 11.7 - Prob. 2ECh. 11.7 - Prob. 3ECh. 11.7 - Prob. 4ECh. 11.7 - Prob. 5ECh. 11.7 - Prob. 6ECh. 11.7 - Prob. 8ECh. 11.7 - Prob. 9ECh. 11.7 - Prob. 10ECh. 11.7 - Prob. 11ECh. 11.7 - Prob. 12ECh. 11.7 - Show that the only eigenfunctions of 23-24...Ch. 11.7 - a. Use formula 25 to show that Pn(x) is an odd...Ch. 11.7 - Prob. 16ECh. 11.8 - Prob. 1ECh. 11.8 - Prob. 2ECh. 11.8 - Prob. 3ECh. 11.8 - Can the function (x)=x4sin(1/x) be a solution on...Ch. 11.8 - Prob. 6ECh. 11.8 - Prob. 7ECh. 11.8 - Prob. 8ECh. 11.8 - Prob. 9ECh. 11.8 - Prob. 10ECh. 11.8 - Prob. 11ECh. 11.8 - In equation (10), assume Q(x)m2 on [a,b]. Prove...Ch. 11.8 - Prob. 13ECh. 11.8 - Show that if Q(x)m20 on [a,), then every solution...Ch. 11.RP - Find all the real eigen-values and eigen-functions...Ch. 11.RP - Prob. 2RPCh. 11.RP - a. Determine the eigenfunctions, which are...Ch. 11.RP - Prob. 4RPCh. 11.RP - Use the Fredholm alternative to determine...Ch. 11.RP - Find the formal eigenfunction expansion for the...Ch. 11.RP - Find the Greens function G(x,s) and use it to...Ch. 11.RP - Find a formal eigenfunction expansion for the...Ch. 11.RP - Let (x) be a nontrivial solution to...Ch. 11.RP - Use Corollary 5 in Section 11.8 to estimate the...
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Text book image
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Text book image
Calculus Volume 1
Math
ISBN:9781938168024
Author:Strang, Gilbert
Publisher:OpenStax College
Text book image
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Text book image
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Text book image
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Lecture 46: Eigenvalues & Eigenvectors; Author: IIT Kharagpur July 2018;https://www.youtube.com/watch?v=h5urBuE4Xhg;License: Standard YouTube License, CC-BY
What is an Eigenvector?; Author: LeiosOS;https://www.youtube.com/watch?v=ue3yoeZvt8E;License: Standard YouTube License, CC-BY