
Elementary Technical Mathematics
12th Edition
ISBN: 9781337630580
Author: Dale Ewen
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11.5, Problem 13E
Simplify:
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
For the curve defined by
r(t) = (e** cos(t), et sin(t))
find the unit tangent vector, unit normal vector, normal acceleration, and tangential acceleration at
t
=
πT
3
T (1)
N
Ň (1)
133 |
aN =
53
ar
=
=
=
Find the tangential and normal components of the acceleration vector for the curve
-
F(t) = (2t, −3t³, −3+¹) at the point t = 1
-
ā(1)
=
T +
Ñ
Give your answers to two decimal places
Find the unit tangent vector to the curve defined by
(t)=(-2t,-4t, √√49 - t²) at t = −6.
T(−6) =
Chapter 11 Solutions
Elementary Technical Mathematics
Ch. 11.1 - Solve each equation: x2+x=12Ch. 11.1 - Solve each equation: x23x+2=0Ch. 11.1 - Solve each equation: x2+x20=0Ch. 11.1 - Prob. 4ECh. 11.1 - Solve each equation: x22=xCh. 11.1 - Solve each equation: x215x=54Ch. 11.1 - Solve each equation: x21=0Ch. 11.1 - Solve each equation: 16n2=49Ch. 11.1 - Solve each equation: x249=0Ch. 11.1 - Prob. 10E
Ch. 11.1 - Solve each equation: w2+5w+6=0Ch. 11.1 - Solve each equation: x26x=0Ch. 11.1 - Prob. 13ECh. 11.1 - Solve each equation: c2+2=3cCh. 11.1 - Solve each equation: n26n60=0Ch. 11.1 - Solve each equation: x217x+16=0Ch. 11.1 - Solve each equation: 9m=m2Ch. 11.1 - Solve each equation: 6n215n=0Ch. 11.1 - Solve each equation: x2=108+3xCh. 11.1 - Solve each equation: x2x=42Ch. 11.1 - Solve each equation: c2+6c=16Ch. 11.1 - Solve each equation: 4x2+4x3=0Ch. 11.1 - Solve each equation: 10x2+29x+10=0Ch. 11.1 - Solve each equation: 2x2=17x8Ch. 11.1 - Solve each equation: 4x2=25Ch. 11.1 - Solve each equation: 25x=x2Ch. 11.1 - Solve each equation: 9x2+16=24xCh. 11.1 - Solve each equation: 24x2+10=31xCh. 11.1 - Solve each equation: 3x2+9x=0Ch. 11.1 - A rectangle is 5 ft longer than it is wide. (See...Ch. 11.1 - The area of a triangle is 66 m2, and its base is 1...Ch. 11.1 - A rectangle is 9 ft longer than it is wide, and...Ch. 11.1 - A heating duct has a rectangular cross section...Ch. 11.2 - Find the value of a, b, and c in each equation:...Ch. 11.2 - Find the value of a, b, and c in each equation:...Ch. 11.2 - Find the value of a, b, and c in each equation:...Ch. 11.2 - Prob. 4ECh. 11.2 - Find the value of a, b, and c in each equation:...Ch. 11.2 - Find the value of a, b, and c in each equation:...Ch. 11.2 - Find the value of a, b, and c in each equation:...Ch. 11.2 - Find the value of a, b, and c in each equation:...Ch. 11.2 - Solve each equation using the quadratic formula....Ch. 11.2 - Solve each equation using the quadratic formula....Ch. 11.2 - Solve each equation using the quadratic formula....Ch. 11.2 - Solve each equation using the quadratic formula....Ch. 11.2 - Solve each equation using the quadratic formula....Ch. 11.2 - Solve each equation using the quadratic formula....Ch. 11.2 - Solve each equation using the quadratic formula....Ch. 11.2 - Solve each equation using the quadratic formula....Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.3 - A variable voltage in an electrical circuit is...Ch. 11.3 - A variable electric current is given by i=t27t+12,...Ch. 11.3 - A rectangular piece of sheet metal is 4 ft longer...Ch. 11.3 - A hole in the side of a large metal tank needs to...Ch. 11.3 - The area of the wings of a small Cessna is 175...Ch. 11.3 - The perimeter of a rectangle is 46 cm, and its...Ch. 11.3 - The perimeter of a rectangle is 160 m, and its...Ch. 11.3 - A rectangular field is fenced in by using a river...Ch. 11.3 - The dimensions of a doorway are 3 ft by 7 ft 6 in....Ch. 11.3 - A square, 4 in. on a side, is cut out of each...Ch. 11.3 - A square is cut out of each corner of a...Ch. 11.3 - The area of a rectangular lot 80 m by 100 m is to...Ch. 11.3 - Prob. 13ECh. 11.3 - A border of uniform width is printed on a page...Ch. 11.3 - A company needs to build a ware house with...Ch. 11.3 - A 2000-ft2 storage building 9 ft high is needed to...Ch. 11.3 - A landscaper is laying sod in a rectangular front...Ch. 11.3 - A rectangular forest plot contains 120 acres and...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Simplify: j3Ch. 11.5 - Simplify: j6Ch. 11.5 - Simplify: j13Ch. 11.5 - Simplify: j16Ch. 11.5 - Simplify: j19Ch. 11.5 - Simplify: j31Ch. 11.5 - Simplify: j24Ch. 11.5 - Simplify: j26Ch. 11.5 - Simplify: j38Ch. 11.5 - Simplify: j81Ch. 11.5 - Simplify: 1jCh. 11.5 - Simplify: 1j6Ch. 11.5 - Determine the natural of the roots of each...Ch. 11.5 - Determine the natural of the roots of each...Ch. 11.5 - Determine the natural of the roots of each...Ch. 11.5 - Determine the natural of the roots of each...Ch. 11.5 - Determine the natural of the roots of each...Ch. 11.5 - Determine the natural of the roots of each...Ch. 11.5 - Determine the natural of the roots of each...Ch. 11.5 - Determine the natural of the roots of each...Ch. 11.5 - Determine the natural of the roots of each...Ch. 11.5 - Determine the natural of the roots of each...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11 - Prob. 1RCh. 11 - Solve for x:3x(x2)=0Ch. 11 - Solve each equation by factoring: x24=0Ch. 11 - Solve each equation by factoring: x2x=6Ch. 11 - Solve each equation by factoring: 5x26x=0Ch. 11 - Solve each equation by factoring: x23x28=0Ch. 11 - Solve each equation by factoring: x214x=45Ch. 11 - Solve each equation by factoring: x2183x=0Ch. 11 - Solve each equation by factoring: 3x2+20x+32=0Ch. 11 - Solve each equation using the quadratic formula...Ch. 11 - Solve each equation using the quadratic formula...Ch. 11 - Solve each equation using the quadratic formula...Ch. 11 - Solve each equation using the quadratic formula...Ch. 11 - Solve each equation using the quadratic formula...Ch. 11 - The area of a piece of plywood is 36 ft2. Its...Ch. 11 - A variable electric current is given by the...Ch. 11 - Draw the graph of each equation and label each...Ch. 11 - Draw the graph of each equation and label each...Ch. 11 - Express each number in terms of j: 36Ch. 11 - Express each number in terms of j: 73Ch. 11 - Simplify: j12Ch. 11 - Simplify: j27Ch. 11 - Determine the nature of the roots of each...Ch. 11 - Determine the nature of the roots of each...Ch. 11 - Solve each equation using the quadratic formula...Ch. 11 - Solve each equation using the quadratic formula...Ch. 11 - A solar-heated house has a rectangular heat...Ch. 11 - A rectangular opening is 15 in. wide and 26 in....Ch. 11 - Solve each equation: x2=64Ch. 11 - Solve each equation: x28x=0Ch. 11 - Solve each equation: x2+9x36=0Ch. 11 - Solve each equation: 12x2+4x=1Ch. 11 - Solve each equation using the quadratic formula...Ch. 11 - Solve each equation using the quadratic formula...Ch. 11 - Prob. 7TCh. 11 - Prob. 8TCh. 11 - Prob. 9TCh. 11 - Prob. 10TCh. 11 - Draw the graph of y=x28x15 and label the vertex.Ch. 11 - Draw the graph of y=2x2+8x+11 and label the...Ch. 11 - Express each number in terms of j: 16Ch. 11 - Express each number in terms of j: 29Ch. 11 - Simplify: j9Ch. 11 - Simplify: j28Ch. 11 - Determine the nature of the roots of 3x2x+4=0...Ch. 11 - One side of a rectangle is 5 cm more that another....
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- answer number 4arrow_forward3. Bayesian Inference – Updating Beliefs A medical test for a rare disease has the following characteristics: Sensitivity (true positive rate): 99% Specificity (true negative rate): 98% The disease occurs in 0.5% of the population. A patient receives a positive test result. Questions: a) Define the relevant events and use Bayes’ Theorem to compute the probability that the patient actually has the disease.b) Explain why the result might seem counterintuitive, despite the high sensitivity and specificity.c) Discuss how prior probabilities influence posterior beliefs in Bayesian inference.d) Suppose a second, independent test with the same accuracy is conducted and is also positive. Update the probability that the patient has the disease.arrow_forwardanswer number 6arrow_forward
- answer number 2arrow_forward4. Linear Regression - Model Assumptions and Interpretation A real estate analyst is studying how house prices (Y) are related to house size in square feet (X). A simple linear regression model is proposed: The analyst fits the model and obtains: • Ŷ50,000+150X YBoB₁X + € • R² = 0.76 • Residuals show a fan-shaped pattern when plotted against fitted values. Questions: a) Interpret the slope coefficient in context. b) Explain what the R² value tells us about the model's performance. c) Based on the residual pattern, what regression assumption is likely violated? What might be the consequence? d) Suggest at least two remedies to improve the model, based on the residual analysis.arrow_forward5. Probability Distributions – Continuous Random Variables A factory machine produces metal rods whose lengths (in cm) follow a continuous uniform distribution on the interval [98, 102]. Questions: a) Define the probability density function (PDF) of the rod length.b) Calculate the probability that a randomly selected rod is shorter than 99 cm.c) Determine the expected value and variance of rod lengths.d) If a sample of 25 rods is selected, what is the probability that their average length is between 99.5 cm and 100.5 cm? Justify your answer using the appropriate distribution.arrow_forward
- 2. Hypothesis Testing - Two Sample Means A nutritionist is investigating the effect of two different diet programs, A and B, on weight loss. Two independent samples of adults were randomly assigned to each diet for 12 weeks. The weight losses (in kg) are normally distributed. Sample A: n = 35, 4.8, s = 1.2 Sample B: n=40, 4.3, 8 = 1.0 Questions: a) State the null and alternative hypotheses to test whether there is a significant difference in mean weight loss between the two diet programs. b) Perform a hypothesis test at the 5% significance level and interpret the result. c) Compute a 95% confidence interval for the difference in means and interpret it. d) Discuss assumptions of this test and explain how violations of these assumptions could impact the results.arrow_forward1. Sampling Distribution and the Central Limit Theorem A company produces batteries with a mean lifetime of 300 hours and a standard deviation of 50 hours. The lifetimes are not normally distributed—they are right-skewed due to some batteries lasting unusually long. Suppose a quality control analyst selects a random sample of 64 batteries from a large production batch. Questions: a) Explain whether the distribution of sample means will be approximately normal. Justify your answer using the Central Limit Theorem. b) Compute the mean and standard deviation of the sampling distribution of the sample mean. c) What is the probability that the sample mean lifetime of the 64 batteries exceeds 310 hours? d) Discuss how the sample size affects the shape and variability of the sampling distribution.arrow_forwardAn airplane flies due west at an airspeed of 428 mph. The wind blows in the direction of 41° south of west at 50 mph. What is the ground speed of the airplane? What is the bearing of the airplane? 428 mph 41° 50 mph a. The ground speed of the airplane is b. The bearing of the airplane is mph. south of west.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellElementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice UniversityIntermediate AlgebraAlgebraISBN:9781285195728Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,

Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell

Elementary Algebra
Algebra
ISBN:9780998625713
Author:Lynn Marecek, MaryAnne Anthony-Smith
Publisher:OpenStax - Rice University

Intermediate Algebra
Algebra
ISBN:9781285195728
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning



Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Mod-01 Lec-01 Discrete probability distributions (Part 1); Author: nptelhrd;https://www.youtube.com/watch?v=6x1pL9Yov1k;License: Standard YouTube License, CC-BY
Discrete Probability Distributions; Author: Learn Something;https://www.youtube.com/watch?v=m9U4UelWLFs;License: Standard YouTube License, CC-BY
Probability Distribution Functions (PMF, PDF, CDF); Author: zedstatistics;https://www.youtube.com/watch?v=YXLVjCKVP7U;License: Standard YouTube License, CC-BY
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License