Loose Leaf for Vector Mechanics for Engineers: Statics and Dynamics
12th Edition
ISBN: 9781259977206
Author: BEER, Ferdinand P., Johnston Jr., E. Russell, Mazurek, David, Cornwell, Phillip J., SELF, Brian
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11.4, Problem 11.124P
(a)
To determine
The velocity
(b)
To determine
The acceleration
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
applied mechanics 2
11.86 Two road rally checkpoints A and B are located on the same highway
and are 8 mi apart. The speed limits for the first 5 mi and the last
3 mi are 60 mi/h and 35 mi/h, respectively. Drivers must stop at each
checkpoint, and the specified time between points A and B is 10 min
20 s. Knowing that the driver accelerates and decelerates at the same
constant rate, determine the magnitude of her acceleration if she trav-
els at the speed limit as much as possible.
Ak
Fig. P11.86
5 mi
C
3 mi
B
PROBLEM 11.46
Car A is parked along the northbound lane of a highway, and car B is traveling in the southbound lane at a
constant speed of 60 mi/h. Att=0, A starts and accelerates at a constant rate a, while at t=5s, B begins to
slow down with a constant deceleration of magnitude a 16. Knowing that when the cars pass each other
x = 294 ft and v =VR, determine (a) the acceleration a, (b) when the vehicles pass each other, (c) the
distance d between the vehicles at t=0.
(-60 mi/h
(l 0
Name - Mortada Ali
SOLUTION
Qassem
VA =0+a,t
Xg =0+(vg)ot (và)o =60 mi/h = 88 ft/s
Xg = (88 ft/s)(5 s) = 440 ft
1
Va = ("g), + a»(t – 5) ag =--a,
Assume t> 5 s when the cars pass each other.
At that time (t AB ),
VA = VB:
astAB = (88 ft/s) –
-(1 AB
-5)
294 ft =ai.
= 294 ft:
a,(공AB-8)- 88
Then
%3D
294
441B - 343t AB + 245 = 0
or
Hey I want a nice
handwriting please
with my name the
same solution
Chapter 11 Solutions
Loose Leaf for Vector Mechanics for Engineers: Statics and Dynamics
Ch. 11.1 - A bus travels the 100 miles between A and B at 50...Ch. 11.1 - Two cars A and B race each other down a straight...Ch. 11.1 - A snowboarder starts from rest at the top of a...Ch. 11.1 - The motion of a particle is defined by the...Ch. 11.1 - The vertical motion of mass A is defined by the...Ch. 11.1 - A loaded railroad car is rolling at a constant...Ch. 11.1 - A group of hikers uses a GPS while doing a 40-mile...Ch. 11.1 - The motion of a particle is defined by the...Ch. 11.1 - A girl operates a radio-controlled model car in a...Ch. 11.1 - The motion of a particle is defined by the...
Ch. 11.1 - The brakes of a car are applied, causing it to...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - Many car companies are performing research on...Ch. 11.1 - A Scotch yoke is a mechanism that transforms the...Ch. 11.1 - For the Scotch yoke mechanism shown, the...Ch. 11.1 - A piece of electronic equipment that is surrounded...Ch. 11.1 - A projectile enters a resisting medium at x = 0...Ch. 11.1 - Point A oscillates with an acceleration a =...Ch. 11.1 - A brass (nonmagnetic) block A and a steel magnet B...Ch. 11.1 - Based on experimental observations, the...Ch. 11.1 - A spring AB is attached to a support at A and to a...Ch. 11.1 - Prob. 11.21PCh. 11.1 - Starting from x = 0 with no initial velocity, a...Ch. 11.1 - A ball is dropped from a boat so that it strikes...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - A human-powered vehicle (HPV) team wants to model...Ch. 11.1 - Prob. 11.27PCh. 11.1 - Based on observations, the speed of a jogger can...Ch. 11.1 - The acceleration due to gravity at an altitude y...Ch. 11.1 - The acceleration due to gravity of a particle...Ch. 11.1 - The velocity of a particle is v = v0[1 sin(t/T)]....Ch. 11.1 - An eccentric circular cam, which serves a similar...Ch. 11.2 - An airplane begins its take-off run at A with zero...Ch. 11.2 - A minivan is tested for acceleration and braking....Ch. 11.2 - Steep safety ramps are built beside mountain...Ch. 11.2 - A group of students launches a model rocket in the...Ch. 11.2 - A small package is released from rest at A and...Ch. 11.2 - A sprinter in a 100-m race accelerates uniformly...Ch. 11.2 - Automobile A starts from O and accelerates at the...Ch. 11.2 - In a boat race, boat A is leading boat B by 50 m...Ch. 11.2 - As relay runner A enters the 65-ft-long exchange...Ch. 11.2 - Automobiles A and B are traveling in adjacent...Ch. 11.2 - Two automobiles A and B are approaching each other...Ch. 11.2 - An elevator is moving upward at a constant speed...Ch. 11.2 - Prob. 11.45PCh. 11.2 - Prob. 11.46PCh. 11.2 - The elevator E shown in the figure moves downward...Ch. 11.2 - The elevator E shown starts from rest and moves...Ch. 11.2 - An athlete pulls handle A to the left with a...Ch. 11.2 - An athlete pulls handle A to the left with a...Ch. 11.2 - In the position shown, collar B moves to the left...Ch. 11.2 - Collar A starts from rest and moves to the right...Ch. 11.2 - A farmer lifts his hay bales into the top loft of...Ch. 11.2 - The motor M reels in the cable at a constant rate...Ch. 11.2 - Collar A starts from rest at t = 0 and moves...Ch. 11.2 - Collars A and B start from rest, and collar A...Ch. 11.2 - Block B starts from rest, block A moves with a...Ch. 11.2 - Prob. 11.58PCh. 11.2 - The system shown starts from rest, and each...Ch. 11.2 - Prob. 11.60PCh. 11.3 - A particle moves in a straight line with a...Ch. 11.3 - Prob. 11.62PCh. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - Prob. 11.66PCh. 11.3 - A commuter train traveling at 40 mi/h is 3 mi from...Ch. 11.3 - Prob. 11.68PCh. 11.3 - In a water-tank test involving the launching of a...Ch. 11.3 - The acceleration record shown was obtained for a...Ch. 11.3 - Prob. 11.71PCh. 11.3 - Prob. 11.72PCh. 11.3 - Prob. 11.73PCh. 11.3 - Car A is traveling on a highway at a constant...Ch. 11.3 - Prob. 11.75PCh. 11.3 - Prob. 11.76PCh. 11.3 - Prob. 11.77PCh. 11.3 - Prob. 11.78PCh. 11.3 - An airport shuttle train travels between two...Ch. 11.3 - Prob. 11.80PCh. 11.3 - Prob. 11.81PCh. 11.3 - The acceleration record shown was obtained during...Ch. 11.3 - Prob. 11.83PCh. 11.3 - Prob. 11.84PCh. 11.3 - An elevator starts from rest and rises 40 m to its...Ch. 11.3 - Two road rally checkpoints A and B are located on...Ch. 11.3 - As shown in the figure, from t = 0 to t = 4 s, the...Ch. 11.3 - Prob. 11.88PCh. 11.4 - Two model rockets are fired simultaneously from a...Ch. 11.4 - Ball A is thrown straight up. Which of the...Ch. 11.4 - Ball A is thrown straight up with an initial speed...Ch. 11.4 - Two cars are approaching an intersection at...Ch. 11.4 - Prob. 11.7CQCh. 11.4 - A ball is thrown so that the motion is defined by...Ch. 11.4 - The motion of a vibrating particle is defined by...Ch. 11.4 - The motion of a particle is defined by the...Ch. 11.4 - The motion of a particle is defined by the...Ch. 11.4 - Prob. 11.93PCh. 11.4 - A girl operates a radio-controlled model car in a...Ch. 11.4 - The three-dimensional motion of a particle is...Ch. 11.4 - The three-dimensional motion of a particle is...Ch. 11.4 - An airplane used to drop water on brushfires is...Ch. 11.4 - A ski jumper starts with a horizontal take-off...Ch. 11.4 - A baseball pitching machine throws baseballs with...Ch. 11.4 - While delivering newspapers, a girl throws a...Ch. 11.4 - A pump is located near the edge of the horizontal...Ch. 11.4 - In slow pitch softball, the underhand pitch must...Ch. 11.4 - A volleyball player serves the ball with an...Ch. 11.4 - A golfer hits a golf ball with an initial velocity...Ch. 11.4 - A homeowner uses a snowblower to clear his...Ch. 11.4 - At halftime of a football game, souvenir balls are...Ch. 11.4 - A basketball player shoots when she is 16 ft from...Ch. 11.4 - A tennis player serves the ball at a height h =...Ch. 11.4 - Prob. 11.109PCh. 11.4 - While holding one of its ends, a worker lobs a...Ch. 11.4 - Prob. 11.111PCh. 11.4 - Prob. 11.112PCh. 11.4 - Prob. 11.113PCh. 11.4 - A worker uses high-pressure water to clean the...Ch. 11.4 - An oscillating garden sprinkler which discharges...Ch. 11.4 - A nozzle at A discharges water with an initial...Ch. 11.4 - The velocities of skiers A and B are as shown....Ch. 11.4 - The three blocks shown move with constant...Ch. 11.4 - Three seconds after automobile B passes through...Ch. 11.4 - Prob. 11.120PCh. 11.4 - Airplanes A and B are flying at the same altitude...Ch. 11.4 - Prob. 11.122PCh. 11.4 - Prob. 11.123PCh. 11.4 - Prob. 11.124PCh. 11.4 - A boat is moving to the right with a constant...Ch. 11.4 - Prob. 11.126PCh. 11.4 - Coal discharged from a dump truck with an initial...Ch. 11.4 - Conveyor belt A, which forms a 20 angle with the...Ch. 11.4 - During a rainstorm, the paths of the raindrops...Ch. 11.4 - Prob. 11.130PCh. 11.4 - Prob. 11.131PCh. 11.4 - As part of a department store display, a model...Ch. 11.5 - The Ferris wheel is rotating with a constant...Ch. 11.5 - Prob. 11.9CQCh. 11.5 - A child walks across merry-go-round A with a...Ch. 11.5 - Prob. 11.133PCh. 11.5 - Determine the maximum speed that the cars of the...Ch. 11.5 - Human centrifuges are often used to simulate...Ch. 11.5 - The diameter of the eye of a stationary hurricane...Ch. 11.5 - The peripheral speed of the tooth of a...Ch. 11.5 - A robot arm moves so that P travels in a circle...Ch. 11.5 - A monorail train starts from rest on a curve of...Ch. 11.5 - A motorist starts from rest at point A on a...Ch. 11.5 - Race car A is traveling on a straight portion of...Ch. 11.5 - At a given instant in an airplane race, airplane A...Ch. 11.5 - A race car enters the circular portion of a track...Ch. 11.5 - Pin A, which is attached to link AB, is...Ch. 11.5 - A golfer hits a golf ball from point A with an...Ch. 11.5 - A nozzle discharges a stream of water in the...Ch. 11.5 - Coal is discharged from the tailgate A of a dump...Ch. 11.5 - From measurements of a photograph, it has been...Ch. 11.5 - A child throws a ball from point A with an initial...Ch. 11.5 - A projectile is fired from point A with an initial...Ch. 11.5 - Prob. 11.151PCh. 11.5 - Prob. 11.152PCh. 11.5 - 11.153 and 11.154 A satellite will travel...Ch. 11.5 - Prob. 11.154PCh. 11.5 - Prob. 11.155PCh. 11.5 - Prob. 11.156PCh. 11.5 - Prob. 11.157PCh. 11.5 - A satellite will travel indefinitely in a circular...Ch. 11.5 - Knowing that the radius of the earth is 6370 km,...Ch. 11.5 - Satellites A and B are traveling in the same plane...Ch. 11.5 - The angular displacement of the robotic arm is...Ch. 11.5 - During a parasailing ride, the boat is traveling...Ch. 11.5 - Some parasailing systems use a winch to pull the...Ch. 11.5 - As rod OA rotates, pin P moves along the parabola...Ch. 11.5 - The pin at B is free to slide along the circular...Ch. 11.5 - Prob. 11.167PCh. 11.5 - After taking off, a helicopter climbs in a...Ch. 11.5 - At the bottom of a loop in the vertical plane, an...Ch. 11.5 - An airplane passes over a radar tracking station...Ch. 11.5 - Prob. 11.171PCh. 11.5 - Prob. 11.172PCh. 11.5 - 11.173 and 11.174 A particle moves along the...Ch. 11.5 - Prob. 11.174PCh. 11.5 - Prob. 11.175PCh. 11.5 - Prob. 11.176PCh. 11.5 - The motion of a particle on the surface of a right...Ch. 11.5 - Prob. 11.178PCh. 11.5 - The three-dimensional motion of a particle is...Ch. 11.5 - For the conic helix of Prob. 11.95, determine the...Ch. 11 - Students are testing their new drone to see if it...Ch. 11 - A drag racing car starts from rest and moves down...Ch. 11 - A driver is traveling at a speed of 72 km/h in car...Ch. 11 - The velocities of commuter trains A and B are as...Ch. 11 - Knowing that slider block A starts from rest and...Ch. 11 - A roller-coaster car is traveling at a speed of 20...Ch. 11 - A golfer hits a ball with an initial velocity of...Ch. 11 - As the truck shown begins to back up with a...Ch. 11 - A velodrome is a specially designed track used in...Ch. 11 - Sand is discharged at A from a conveyor belt and...Ch. 11 - The end point B of a boom is originally 5 m from...Ch. 11 - A telemetry system is used to quantify kinematic...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 11.10 The acceleration of a particle is directly proportional to the square of the time t. When 1 = 0, the particle is at r = 24 m. Knowing that at 1 = 6 s, r = 96 m and o = 18 m/s, express r and o in terms of 1. 11.11 The acceleration of a particle is directly proportional to the time t. At 1 = 0, the velocity of the particle is o = 16 in./s. Knowing that D = 15 in./s and that r = 20 in. when t = 1 s. determine the velocity, the position, and the total distance traveled when 1 = 7 s. 11.12 The acceleration of a particle is defined by the relation a = kt?. (a) Knowing that u = -32 ft/s when t = 0 and that o = +32 fU/s when t = 4 s, determine the constant k. (b) Write the equations of motion, knowing also that + = 0 when + = 4 s.arrow_forwardQ1) Two automobiles A and B are approaching each other in adjacent highway lanes. At t = 0, A and B are 1 km apart, their speeds are va = 108 km/h and vg = 63 km/h, and they are at points P and Q, respectively. Knowing that A passes point Q 40 s after B was there and that B passes point P 42 s after A was there, determine (a) the uniform accelerations of A and B, (b) when the vehicles pass each other, (c) the speed of B at that time. A108 kra/l 1 kmarrow_forwarda 11.167 V To study the performance of a racecar, a high-speed camera is positioned at Point A. The camera is mounted on a mechanism which permits it to record the motion of the car as the car travels on straightway BC. Determine (a) the speed of the car in terms of b, 0, and 0 and (b) the magnitude of the acceleration in terms of b, 0, é , and ê. В C b Aarrow_forward
- PROBLEM 11.10 The acceleration of a particle is directly proportional to the time t. At 1 0, the velocity of the particle is v= 16 in./s. Knowing that v 15 in./s and that x= 20 in. when t=1 s, determine the velocity, the position, and the total distance traveled when 1 =7 s.arrow_forwardProblem 2 Airplane A is flying as shown with speed is being increased at a rate of 12 m/s². Airplane B is flying at the same altitude as airplane A and is following a circular path of 200-mm radius. Knowing that at the given instant the speed of B is being deceased at the rate of 4 m/s², determine, for the positions shown a) The velocity of B relative to A b) The acceleration of B relative to it 300 m 400 km/h 200 m 30° B 500 km/harrow_forwardProblem 12.228 At the instant shown, cars A and B are traveling at velocities of 40 m/s and 30 m/s, respectively. A is increasing its speed at 4 m/s², whereas the speed of B is decreasing at 3 m/s². The radius of curvature at B is pB = 200 m. (Figure 1) Figure L. 30° 1 of 1 Part A Determine the magnitude of the velocity of B with respect to A. Express your answer to three significant figures and include the appropriate units. VB/A Submit Part B = 0₂ = ol Submit μA Value Request Answer Determine the direction angle of the velocity of B with respect to A measured counterclockwise from the positive x axis. Express your answer in degrees to three significant figures. 7| ΑΣΦ ↓↑ Units Request Answer ? vec ? Oarrow_forward
- Knowing that at the instant shown assembly A has a velocity of 9 in./s and an acceleration of 15 in/s^2 both directed downward, determine (a) the velocity of block B, (b) the acceleration of block Barrow_forwardi need the answer quicklyarrow_forwardPlease solve with white paper and detailed solution thanks Q2/ PROBLEM 11.46 Car A is parked along the northbound lane of a highway, and car B is traveling in the southbound lane at a constant speed of 60 mi/h. At t 0, A starts and accelerates at a constant rate a,, while at t = 5 s, B begins to slow down with a constant deceleration of magnitude a /6. Knowing that when the cars pass each other x = 294 ft and v, = v, detemine (a) the acceleration a, (b) when the vehicles pass each other, (c) the distance d betwveen the vehicles at 1 = 0. (v= G0 mi/h (Da)g = 0 Barrow_forward
- Race car A is traveling on a straight portion of the track while race car B is traveling on a circular portion of the track. At the instant shown, the speed of A is increasing at the rate of 10 m/s2, and the speed of B is decreasing at the rate of 6 m/s2. For the position shown, determine (a) the velocity of B relative to A, (b) the acceleration of B relative to A.arrow_forwardProblem No. 1 In a boat race, boat A is leading boat B by 50 meters and both boats are traveling at a constant speed of 180 km/h. At time 0, the boats accelerate at constant rates. Knowing that when B passes A, time = 8 seconds and V = 225 km/h a determine (a) the acceleration of A in meters per second square, (b) the acceleration of B in meters per second square. 50 marrow_forwardProblem 11: Particles A and B are traveling around a circular hoop at a speed of 8 m/s at the instant shown. If the speed of B is increasing at constant 4 m/s², and the speed of A is increasing at 0.8t m/s², determine: (a) The time to at which the particles will collide. Ans: t = 2.51s, 14.63 s (b) The magnitude of the accelerations of both particles just before the collision occurs. Ans: a₁ = 22.22aB = ( aA 65.12 8 = 120⁰ r = 5m Problem 12: A boat has an initial speed of 16 ft/s. If it then increases its speed at the rate = 1.5s ft/s², where s is the distance travelled in ft, determine the time needed for the boat to travel s = 50 ft. The path of the boat is a circle of radius p = 80ft. Ans: t = 1.68 sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY