After a 5 -yr slump in the real estate market, housing prices stabilize and even begin to appreciate in value. One homeowner buys a house for $ 140 , 000 and finds that the value of the property increases by 3 % per year thereafter. Assuming that the trend continues, find the value of the home 15 yr later. Round to the nearest $ 1000 .
After a 5 -yr slump in the real estate market, housing prices stabilize and even begin to appreciate in value. One homeowner buys a house for $ 140 , 000 and finds that the value of the property increases by 3 % per year thereafter. Assuming that the trend continues, find the value of the home 15 yr later. Round to the nearest $ 1000 .
Solution Summary: The author calculates the increase in the value of the property in 15 years after the homeowner buys a house for 140000.
After a
5
-yr
slump in the real estate market, housing prices stabilize and even begin to appreciate in value. One homeowner buys a house for
$
140
,
000
and finds that the value of the property increases by
3
%
per year thereafter. Assuming that the trend continues, find the value of the home
15
yr
later. Round to the nearest
$
1000
.
T
1
7. Fill in the blanks to write the calculus problem that would result in the following integral (do
not evaluate the interval). Draw a graph representing the problem.
So
π/2
2 2πxcosx dx
Find the volume of the solid obtained when the region under the curve
on the interval
is rotated about the
axis.
38,189
5. Draw a detailed graph to and set up, but do not evaluate, an integral for the volume of the
solid obtained by rotating the region bounded by the curve: y = cos²x_for_ |x|
≤
and the curve y
y =
about the line
x =
=플
2
80
F3
a
FEB
9
2
7
0
MacBook Air
3
2
stv
DG
Find f(x) and g(x) such that h(x) = (fog)(x) and g(x) = 3 - 5x.
h(x) = (3 –5x)3 – 7(3 −5x)2 + 3(3 −5x) – 1
-
-
-
f(x) = ☐
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Compound Interest Formula Explained, Investment, Monthly & Continuously, Word Problems, Algebra; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=P182Abv3fOk;License: Standard YouTube License, CC-BY
Applications of Algebra (Digit, Age, Work, Clock, Mixture and Rate Problems); Author: EngineerProf PH;https://www.youtube.com/watch?v=Y8aJ_wYCS2g;License: Standard YouTube License, CC-BY