
Calculus: An Applied Approach (Providence College: MTH 109)
9th Edition
ISBN: 9781285142616
Author: Ron Larson
Publisher: CENGAGE C
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11.3, Problem 24E
To determine
The solution of the given differential equation without actually solving the differential equation
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Differentiate the following function
Differentiate the following function
A box with a square base and open top must have a volume of 13,500 cm³. Find
the dimensions that minimise the amount of material used. Ensure you show your working to
demonstrate that it is a minimum.
Chapter 11 Solutions
Calculus: An Applied Approach (Providence College: MTH 109)
Ch. 11.1 - Checkpoint 1 Worked-out solution available at...Ch. 11.1 - Prob. 2CPCh. 11.1 - Prob. 3CPCh. 11.1 - Prob. 4CPCh. 11.1 - Prob. 1SWUCh. 11.1 - Prob. 2SWUCh. 11.1 - Prob. 3SWUCh. 11.1 - Prob. 4SWUCh. 11.1 - Prob. 5SWUCh. 11.1 - Prob. 6SWU
Ch. 11.1 - Verifying Solutions In Exercises 112, verify the...Ch. 11.1 - Prob. 2ECh. 11.1 - Prob. 3ECh. 11.1 - Prob. 4ECh. 11.1 - Prob. 5ECh. 11.1 - Prob. 6ECh. 11.1 - Prob. 7ECh. 11.1 - Prob. 8ECh. 11.1 - Verifying Solutions In Exercises 1-12, verify the...Ch. 11.1 - Prob. 10ECh. 11.1 - Prob. 11ECh. 11.1 - Prob. 12ECh. 11.1 - Prob. 13ECh. 11.1 - Prob. 14ECh. 11.1 - Determining Solutions In Exercises 1316, determine...Ch. 11.1 - Prob. 16ECh. 11.1 - Determining Solutions In Exercises 1720, determine...Ch. 11.1 - Prob. 18ECh. 11.1 - Prob. 19ECh. 11.1 - Prob. 20ECh. 11.1 - Prob. 21ECh. 11.1 - Prob. 22ECh. 11.1 - Prob. 23ECh. 11.1 - Prob. 24ECh. 11.1 - Prob. 25ECh. 11.1 - Prob. 26ECh. 11.1 - Prob. 27ECh. 11.1 - Prob. 28ECh. 11.1 - Prob. 29ECh. 11.1 - Prob. 30ECh. 11.1 - Prob. 31ECh. 11.1 - Prob. 32ECh. 11.1 - Prob. 33ECh. 11.1 - Prob. 34ECh. 11.1 - Prob. 35ECh. 11.1 - Prob. 36ECh. 11.1 - Prob. 37ECh. 11.1 - Prob. 38ECh. 11.1 - Prob. 39ECh. 11.1 - Investment The rate of growth of an investment is...Ch. 11.1 - Prob. 41ECh. 11.1 - Prob. 42ECh. 11.1 - Prob. 43ECh. 11.1 - Prob. 44ECh. 11.1 - Prob. 45ECh. 11.1 - Prob. 46ECh. 11.2 - Checkpoint 1 Worked-out solution available at...Ch. 11.2 - Prob. 2CPCh. 11.2 - Prob. 3CPCh. 11.2 - Prob. 4CPCh. 11.2 - Prob. 5CPCh. 11.2 - Prob. 6CPCh. 11.2 - Prob. 1SWUCh. 11.2 - Prob. 2SWUCh. 11.2 - Prob. 3SWUCh. 11.2 - Prob. 4SWUCh. 11.2 - Prob. 5SWUCh. 11.2 - Prob. 6SWUCh. 11.2 - Prob. 7SWUCh. 11.2 - Prob. 8SWUCh. 11.2 - Prob. 9SWUCh. 11.2 - Prob. 10SWUCh. 11.2 - Prob. 1ECh. 11.2 - Prob. 2ECh. 11.2 - Prob. 3ECh. 11.2 - Prob. 4ECh. 11.2 - Prob. 5ECh. 11.2 - Prob. 6ECh. 11.2 - Prob. 7ECh. 11.2 - Prob. 8ECh. 11.2 - Prob. 9ECh. 11.2 - Prob. 10ECh. 11.2 - Prob. 11ECh. 11.2 - Prob. 12ECh. 11.2 - Prob. 13ECh. 11.2 - Solving a Differential Equation In Exercises 7-26,...Ch. 11.2 - Prob. 15ECh. 11.2 - Prob. 16ECh. 11.2 - Prob. 17ECh. 11.2 - Prob. 18ECh. 11.2 - Prob. 19ECh. 11.2 - Prob. 20ECh. 11.2 - Prob. 21ECh. 11.2 - Prob. 22ECh. 11.2 - Prob. 23ECh. 11.2 - Prob. 24ECh. 11.2 - Prob. 25ECh. 11.2 - Prob. 26ECh. 11.2 - Prob. 27ECh. 11.2 - Prob. 28ECh. 11.2 - Prob. 29ECh. 11.2 - Prob. 30ECh. 11.2 - Prob. 31ECh. 11.2 - Finding a Particular Solution In Exercises 31-38,...Ch. 11.2 - Prob. 33ECh. 11.2 - Finding a Particular Solution In Exercises 31-38,...Ch. 11.2 - Prob. 35ECh. 11.2 - Finding a Particular Solution In Exercises 31-38,...Ch. 11.2 - Prob. 37ECh. 11.2 - Prob. 38ECh. 11.2 - Prob. 39ECh. 11.2 - Prob. 40ECh. 11.2 - Prob. 41ECh. 11.2 - Prob. 42ECh. 11.2 - Prob. 43ECh. 11.2 - Prob. 44ECh. 11.2 - Radioactive Decay The rate of decomposition of...Ch. 11.2 - Radioactive Decay The rate of decomposition of...Ch. 11.2 - Solve the differential equation. Weight Gain A...Ch. 11.2 - Prob. 1QYCh. 11.2 - Prob. 2QYCh. 11.2 - Prob. 3QYCh. 11.2 - Prob. 4QYCh. 11.2 - Prob. 5QYCh. 11.2 - Prob. 6QYCh. 11.2 - Prob. 7QYCh. 11.2 - Prob. 8QYCh. 11.2 - Prob. 9QYCh. 11.2 - Prob. 10QYCh. 11.2 - Prob. 11QYCh. 11.2 - Prob. 12QYCh. 11.2 - Prob. 13QYCh. 11.2 - Prob. 14QYCh. 11.2 - Prob. 15QYCh. 11.2 - Ignoring resistance, a sailboat starting from rest...Ch. 11.3 - Checkpoint 1 Worked-out solution available at...Ch. 11.3 - Prob. 2CPCh. 11.3 - Prob. 3CPCh. 11.3 - Prob. 1SWUCh. 11.3 - Prob. 2SWUCh. 11.3 - Prob. 3SWUCh. 11.3 - Prob. 4SWUCh. 11.3 - Prob. 5SWUCh. 11.3 - Prob. 6SWUCh. 11.3 - Prob. 7SWUCh. 11.3 - Prob. 8SWUCh. 11.3 - In Exercises 5-10, find the indefinite integral....Ch. 11.3 - Prob. 10SWUCh. 11.3 - Prob. 1ECh. 11.3 - Prob. 2ECh. 11.3 - Prob. 3ECh. 11.3 - Prob. 4ECh. 11.3 - Prob. 5ECh. 11.3 - Prob. 6ECh. 11.3 - Prob. 7ECh. 11.3 - Prob. 8ECh. 11.3 - Solving a Linear Differential Equation In...Ch. 11.3 - Prob. 10ECh. 11.3 - Solving a Linear Differential Equation In...Ch. 11.3 - Solving a Linear Differential Equation In...Ch. 11.3 - Prob. 13ECh. 11.3 - Prob. 14ECh. 11.3 - Prob. 15ECh. 11.3 - Solving a Linear Differential Equation In...Ch. 11.3 - Prob. 17ECh. 11.3 - Solving a Linear Differential Equation In...Ch. 11.3 - Using Two Methods In Exercises 19-22, solve for y...Ch. 11.3 - Prob. 20ECh. 11.3 - Prob. 21ECh. 11.3 - Prob. 22ECh. 11.3 - Prob. 23ECh. 11.3 - Prob. 24ECh. 11.3 - Prob. 25ECh. 11.3 - Prob. 26ECh. 11.3 - Prob. 27ECh. 11.3 - Prob. 28ECh. 11.3 - Prob. 29ECh. 11.3 - Prob. 30ECh. 11.3 - Prob. 31ECh. 11.3 - Prob. 32ECh. 11.3 - Finding a Particular Solution In Exercises 27-34,...Ch. 11.3 - Prob. 34ECh. 11.3 - Prob. 35ECh. 11.3 - Prob. 36ECh. 11.3 - Vertical Motion A falling object encounters air...Ch. 11.3 - Velocity A booster rocket carrying an observation...Ch. 11.3 - Learning Curve The management at a medical supply...Ch. 11.3 - Investment Let A he the amount in a fund earning...Ch. 11.4 - Prob. 1CPCh. 11.4 - Prob. 2CPCh. 11.4 - Checkpoint 3 Worked-out solution available at...Ch. 11.4 - Prob. 4CPCh. 11.4 - Checkpoint 5 Worked-out solution available at...Ch. 11.4 - Prob. 1SWUCh. 11.4 - Prob. 2SWUCh. 11.4 - Prob. 3SWUCh. 11.4 - Prob. 4SWUCh. 11.4 - Prob. 5SWUCh. 11.4 - Prob. 6SWUCh. 11.4 - Prob. 7SWUCh. 11.4 - Prob. 8SWUCh. 11.4 - Prob. 9SWUCh. 11.4 - Prob. 10SWUCh. 11.4 - Prob. 1ECh. 11.4 - Prob. 2ECh. 11.4 - Advertising Awareness In Exercises 3 and 4, use...Ch. 11.4 - Prob. 4ECh. 11.4 - Prob. 5ECh. 11.4 - Prob. 6ECh. 11.4 - Prob. 7ECh. 11.4 - Prob. 8ECh. 11.4 - Prob. 9ECh. 11.4 - Prob. 10ECh. 11.4 - Prob. 11ECh. 11.4 - Prob. 12ECh. 11.4 - Prob. 13ECh. 11.4 - Prob. 14ECh. 11.4 - Prob. 15ECh. 11.4 - Prob. 16ECh. 11.4 - Prob. 17ECh. 11.4 - Chemistry A wet towel hung from a clothesline to...Ch. 11.4 - Prob. 19ECh. 11.4 - Prob. 20ECh. 11.4 - Biology A population of eight beavers has been...Ch. 11.4 - Prob. 22ECh. 11.4 - Prob. 23ECh. 11.4 - Prob. 24ECh. 11.4 - Chemical Mixture A 100-gallon tank is full of a...Ch. 11.4 - Chemical Mixture A 200-gallon tank is half full of...Ch. 11.4 - Prob. 29ECh. 11.4 - Prob. 30ECh. 11.4 - Prob. 31ECh. 11.4 - Prob. 32ECh. 11.4 - Prob. 33ECh. 11.4 - Prob. 34ECh. 11.4 - Prob. 35ECh. 11.4 - Prob. 36ECh. 11.4 - Prob. 37ECh. 11.4 - Prob. 38ECh. 11 - Prob. 1RECh. 11 - Prob. 2RECh. 11 - Prob. 3RECh. 11 - Prob. 4RECh. 11 - Prob. 5RECh. 11 - Prob. 6RECh. 11 - Prob. 7RECh. 11 - Prob. 8RECh. 11 - Prob. 9RECh. 11 - Prob. 10RECh. 11 - Prob. 11RECh. 11 - Prob. 12RECh. 11 - Prob. 13RECh. 11 - Prob. 14RECh. 11 - Finding a Particular Solution In Exercises 15 and...Ch. 11 - Prob. 16RECh. 11 - Prob. 17RECh. 11 - Prob. 18RECh. 11 - Prob. 19RECh. 11 - Prob. 20RECh. 11 - Prob. 21RECh. 11 - Prob. 22RECh. 11 - Prob. 23RECh. 11 - Prob. 24RECh. 11 - Prob. 25RECh. 11 - Prob. 26RECh. 11 - Prob. 27RECh. 11 - Prob. 28RECh. 11 - Prob. 29RECh. 11 - Prob. 30RECh. 11 - Prob. 31RECh. 11 - Prob. 32RECh. 11 - Prob. 33RECh. 11 - Prob. 34RECh. 11 - Prob. 35RECh. 11 - Prob. 36RECh. 11 - Prob. 37RECh. 11 - Prob. 38RECh. 11 - Prob. 39RECh. 11 - Prob. 40RECh. 11 - Prob. 41RECh. 11 - Solving a Differential Equation In Exercises...Ch. 11 - Prob. 43RECh. 11 - Prob. 44RECh. 11 - Prob. 45RECh. 11 - Prob. 46RECh. 11 - Prob. 47RECh. 11 - Prob. 48RECh. 11 - Prob. 49RECh. 11 - Prob. 50RECh. 11 - Prob. 51RECh. 11 - Prob. 52RECh. 11 - Prob. 53RECh. 11 - Prob. 54RECh. 11 - Prob. 55RECh. 11 - Prob. 56RECh. 11 - Solving a Linear Differential Equation In...Ch. 11 - Prob. 58RECh. 11 - Prob. 59RECh. 11 - Prob. 60RECh. 11 - Prob. 61RECh. 11 - Prob. 62RECh. 11 - Prob. 63RECh. 11 - Prob. 64RECh. 11 - Prob. 65RECh. 11 - Prob. 66RECh. 11 - Safety Assume the rate of change per hour in the...Ch. 11 - Prob. 68RECh. 11 - Prob. 69RECh. 11 - Prob. 70RECh. 11 - Prob. 71RECh. 11 - Prob. 72RECh. 11 - Prob. 73RECh. 11 - Prob. 74RECh. 11 - Prob. 75RECh. 11 - Chemical Mixture A tank contains 30 gallons of a...Ch. 11 - Chemical Mixture A tank contains 20 gallons of a...Ch. 11 - Prob. 1TYSCh. 11 - Prob. 2TYSCh. 11 - Prob. 3TYSCh. 11 - Prob. 4TYSCh. 11 - Prob. 5TYSCh. 11 - Prob. 6TYSCh. 11 - Prob. 7TYSCh. 11 - Prob. 8TYSCh. 11 - Prob. 9TYSCh. 11 - Prob. 10TYSCh. 11 - Prob. 11TYSCh. 11 - A lamb that weighs 10 pounds at birth gains weight...Ch. 11 - Prob. 13TYS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Consider the equation, f(x) = x*. (a) Using the trapezoidal method with 3 columns, estimate the value of the integral f² f(x)dx. (b) Using the trapezoidal method with 10 columns, estimate the value of the integral f² f(x)dx. You many need software to help you do this (e.g. MATLAB, Excel, Google sheets). (c) Use software to accurately calculate the integral (e.g. Wolfram alpha, Matlab). Using this answer, comment on the answers you found in parts a) and b).arrow_forwardUsing the first-principles definition of differentiation, find the derivative of f(x) = = 2x²arrow_forwardEvaluate the following integrals, showing all your workingarrow_forward
- Differentiate the following functionarrow_forwardQuestion 1. (10 points) A researcher is studying tumours in mice. The growth rate for the volume of the tumour V(t) in cm³ is given by dV = 1.45V(2 In(V+1)). dt (a) (4 pts) Find all the equilibria and determine their stability using the stability condition. (b) (2 pts) Draw the phase plot f(V) versus V where f(V) = V'. You may find it helpful to use Desmos or Wolfram Alpha to plot the graph of f(V) versus V (both are free to use online), or you can plot it by hand if you like. On the plot identify each equilibrium as stable or unstable. (c) (4 pts) Draw direction arrows for the case where the tumour starts at size 3cm³ and for the case where the tumour starts at size 9cm³. Explain in biological terms what happens to the size of each of these tumours at time progresses.arrow_forwardFor the system consisting of the two planes:plane 1: -x + y + z = 0plane 2: 3x + y + 3z = 0a) Are the planes parallel and/or coincident? Justify your answer. What does this tell you about the solution to the system?b) Solve the system (if possible). Show a complete solution. If there is a line of intersection express it in parametric form.arrow_forward
- Question 2: (10 points) Evaluate the definite integral. Use the following form of the definition of the integral to evaluate the integral: Theorem: Iff is integrable on [a, b], then where Ax = (ba)/n and x₂ = a + i^x. You might need the following formulas. IM³ L² (3x² (3x²+2x- 2x - 1)dx. n [f(z)dz lim f(x)Az a n→∞ i=1 n(n + 1) 2 n i=1 n(n+1)(2n+1) 6arrow_forwardFor the system consisting of the three planes:plane 1: -4x + 4y - 2z = -8plane 2: 2x + 2y + 4z = 20plane 3: -2x - 3y + z = -1a) Are any of the planes parallel and/or coincident? Justify your answer.b) Determine if the normals are coplanar. What does this tell you about the system?c) Solve the system if possible. Show a complete solution (do not use matrix operations). Classify the system using the terms: consistent, inconsistent, dependent and/or independent.arrow_forwardFor the system consisting of the three planes:plane 1: -4x + 4y - 2z = -8plane 2: 2x + 2y + 4z = 20plane 3: -2x - 3y + z = -1a) Are any of the planes parallel and/or coincident? Justify your answer.b) Determine if the normals are coplanar. What does this tell you about the system?c) Solve the system if possible. Show a complete solution (do not use matrix operations). Classify the system using the terms: consistent, inconsistent, dependent and/or independent.arrow_forward
- Open your tool box and find geometric methods, symmetries of even and odd functions and the evaluation theorem. Use these to calculate the following definite integrals. Note that you should not use Riemann sums for this problem. (a) (4 pts) (b) (2 pts) 3 S³ 0 3-x+9-dz x3 + sin(x) x4 + cos(x) dx (c) (4 pts) L 1-|x|dxarrow_forwardAn engineer is designing a pipeline which is supposed to connect two points P and S. The engineer decides to do it in three sections. The first section runs from point P to point Q, and costs $48 per mile to lay, the second section runs from point Q to point R and costs $54 per mile, the third runs from point R to point S and costs $44 per mile. Looking at the diagram below, you see that if you know the lengths marked x and y, then you know the positions of Q and R. Find the values of x and y which minimize the cost of the pipeline. Please show your answers to 4 decimal places. 2 Miles x = 1 Mile R 10 miles miles y = milesarrow_forwardAn open-top rectangular box is being constructed to hold a volume of 150 in³. The base of the box is made from a material costing 7 cents/in². The front of the box must be decorated, and will cost 11 cents/in². The remainder of the sides will cost 3 cents/in². Find the dimensions that will minimize the cost of constructing this box. Please show your answers to at least 4 decimal places. Front width: Depth: in. in. Height: in.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning

Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY