
Pearson eText for Calculus & Its Applications -- Instant Access (Pearson+)
14th Edition
ISBN: 9780137400096
Author: Larry Goldstein, David Lay
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Question
Chapter 11.3, Problem 17E
To determine
The rational number whose decimal expansion is
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Instructions.
"I have written solutions in text form, but I need experts to rewrite them in handwriting from A to Z, exactly as I have written, without any changes."
Both in images okk. Instructions.
"I have written solutions in text form, but I need experts to rewrite them in handwriting from A to Z, exactly as I have written, without any changes."
Question 1:
If a barometer were built using oil (p = 0.92 g/cm³) instead of mercury (p =
13.6 g/cm³), would the column of oil be higher than, lower than, or the same as the
column of mercury at 1.00 atm? If the level is different, by what factor? Explain. (5 pts)
Solution:
A barometer works based on the principle that the pressure exerted by the liquid column
balances atmospheric pressure. The pressure is given by:
P = pgh
Since the atmospheric pressure remains constant (P = 1.00 atm), the height of the
liquid column is inversely proportional to its density:
Step 1: Given Data
PHg
hol=hgx
Poil
• Density of mercury: PHg = 13.6 g/cm³
Density of oil: Poil = 0.92 g/cm³
• Standard height of mercury at 1.00 atm: hμg
Step 2: Compute Height of Oil
= 760 mm = 0.760 m
13.6
hoil
= 0.760 x
0.92
hoil
= 0.760 × 14.78
hoil
= 11.23 m
Step 3: Compare Heights
Since oil is less dense than mercury, the column of oil must be much taller than that of
mercury. The factor by which it is taller is:
Final…
Chapter 11 Solutions
Pearson eText for Calculus & Its Applications -- Instant Access (Pearson+)
Ch. 11.1 - Determine the third Taylor polynomial of f(x)=cosx...Ch. 11.1 - Prob. 2CYUCh. 11.1 - Prob. 1ECh. 11.1 - Prob. 2ECh. 11.1 - Prob. 3ECh. 11.1 - Prob. 4ECh. 11.1 - Prob. 5ECh. 11.1 - Prob. 6ECh. 11.1 - Prob. 7ECh. 11.1 - Prob. 8E
Ch. 11.1 - Prob. 9ECh. 11.1 - Prob. 10ECh. 11.1 - Prob. 11ECh. 11.1 - Prob. 12ECh. 11.1 - Prob. 13ECh. 11.1 - Prob. 14ECh. 11.1 - Prob. 15ECh. 11.1 - Prob. 16ECh. 11.1 - Prob. 17ECh. 11.1 - Prob. 18ECh. 11.1 - Determine the third and fourthTaylor polynomial...Ch. 11.1 - Prob. 20ECh. 11.1 - Prob. 21ECh. 11.1 - Prob. 22ECh. 11.1 - Prob. 23ECh. 11.1 - Prob. 24ECh. 11.1 - Prob. 25ECh. 11.1 - Prob. 26ECh. 11.1 - Prob. 27ECh. 11.1 - Prob. 28ECh. 11.1 - Prob. 29ECh. 11.1 - Prob. 30ECh. 11.1 - Graph the function Y1=11x and its fourth Taylor...Ch. 11.1 - Prob. 32ECh. 11.1 - Prob. 33ECh. 11.1 - Prob. 34ECh. 11.2 - Prob. 1CYUCh. 11.2 - Prob. 2CYUCh. 11.2 - In Exercises 18, use three repetitions of the...Ch. 11.2 - In Exercises 18, use three repetitions of the...Ch. 11.2 - Prob. 3ECh. 11.2 - Prob. 4ECh. 11.2 - In Exercises 18, use three repetitions of the...Ch. 11.2 - Prob. 6ECh. 11.2 - Prob. 7ECh. 11.2 - Prob. 8ECh. 11.2 - Sketch the graph of y=x3+2x+2, and use the...Ch. 11.2 - Prob. 10ECh. 11.2 - Prob. 11ECh. 11.2 - Prob. 12ECh. 11.2 - Prob. 13ECh. 11.2 - Internet Rate of Return An investor buys a bond...Ch. 11.2 - Prob. 15ECh. 11.2 - Prob. 16ECh. 11.2 - Prob. 17ECh. 11.2 - Prob. 18ECh. 11.2 - Prob. 19ECh. 11.2 - Prob. 20ECh. 11.2 - Prob. 21ECh. 11.2 - Figure 9contains the graph of the function...Ch. 11.2 - Prob. 23ECh. 11.2 - Prob. 24ECh. 11.2 - Exercises 25 and 26 present two examples in which...Ch. 11.2 - Prob. 26ECh. 11.2 - Prob. 27ECh. 11.2 - Prob. 28ECh. 11.2 - Prob. 29ECh. 11.2 - Prob. 30ECh. 11.3 - Determine the sum of the geometric series...Ch. 11.3 - Prob. 2CYUCh. 11.3 - Determine the sums of the following geometric...Ch. 11.3 - Prob. 2ECh. 11.3 - Prob. 3ECh. 11.3 - Determine the sums of the following geometric...Ch. 11.3 - Prob. 5ECh. 11.3 - Determine the sums of the following geometric...Ch. 11.3 - Prob. 7ECh. 11.3 - Prob. 8ECh. 11.3 - Prob. 9ECh. 11.3 - Prob. 10ECh. 11.3 - Prob. 11ECh. 11.3 - Prob. 12ECh. 11.3 - Prob. 13ECh. 11.3 - Prob. 14ECh. 11.3 - Prob. 15ECh. 11.3 - Sum an appropriate infinite series to find the...Ch. 11.3 - Prob. 17ECh. 11.3 - Sum an appropriate infinite series to find the...Ch. 11.3 - Prob. 19ECh. 11.3 - Prob. 20ECh. 11.3 - Prob. 21ECh. 11.3 - Prob. 22ECh. 11.3 - Prob. 23ECh. 11.3 - The Multiplier Effect Compute the effect of a 20...Ch. 11.3 - Perpetuity Consider a perpetuity that promises to...Ch. 11.3 - Prob. 26ECh. 11.3 - Bonus plus Taxes on Taxes A generous corporation...Ch. 11.3 - Total Distance Travelled by a Bouncing Ball The...Ch. 11.3 - Elimination of a Drug A patient receives 6 mg of a...Ch. 11.3 - Elimination of a Drug A patient receives 2 mg of a...Ch. 11.3 - Drug Dosage A patient receives M mg of a certain...Ch. 11.3 - Drug Dosage A patient receives M mg of a certain...Ch. 11.3 - Prob. 33ECh. 11.3 - The infinite series a1+a2+a3+ has partial sums...Ch. 11.3 - Prob. 35ECh. 11.3 - Prob. 36ECh. 11.3 - Prob. 37ECh. 11.3 - Determine the sums of the following infinite...Ch. 11.3 - Prob. 39ECh. 11.3 - Prob. 40ECh. 11.3 - Prob. 41ECh. 11.3 - Prob. 42ECh. 11.3 - Prob. 43ECh. 11.3 - Prob. 44ECh. 11.3 - Prob. 45ECh. 11.3 - Prob. 46ECh. 11.3 - Prob. 47ECh. 11.3 - Prob. 48ECh. 11.3 - Prob. 49ECh. 11.3 - In Exercises 49 and 50, convince yourself that the...Ch. 11.4 - What is the improper integral associated with the...Ch. 11.4 - Prob. 2CYUCh. 11.4 - Prob. 1ECh. 11.4 - Prob. 2ECh. 11.4 - Prob. 3ECh. 11.4 - Prob. 4ECh. 11.4 - Prob. 5ECh. 11.4 - Prob. 6ECh. 11.4 - Prob. 7ECh. 11.4 - Prob. 8ECh. 11.4 - Prob. 9ECh. 11.4 - Prob. 10ECh. 11.4 - In Exercises 116, use the integral test to...Ch. 11.4 - Prob. 12ECh. 11.4 - Prob. 13ECh. 11.4 - Prob. 14ECh. 11.4 - Prob. 15ECh. 11.4 - In Exercises 116, use the integral test to...Ch. 11.4 - Prob. 17ECh. 11.4 - Prob. 18ECh. 11.4 - Prob. 19ECh. 11.4 - Prob. 20ECh. 11.4 - In Excercises 2126, use the comparison test to...Ch. 11.4 - Prob. 22ECh. 11.4 - Prob. 23ECh. 11.4 - Prob. 24ECh. 11.4 - Prob. 25ECh. 11.4 - Prob. 26ECh. 11.4 - Prob. 27ECh. 11.4 - Prob. 28ECh. 11.4 - Prob. 29ECh. 11.4 - Prob. 30ECh. 11.4 - Use Exercise 29 to show that the series...Ch. 11.4 - Use Exercise 30 to show that the series k=13k2 is...Ch. 11.5 - Find the Taylor series expansion of sinx at x=0.Ch. 11.5 - Find the Taylor series expansion of cosx at x=0.Ch. 11.5 - Prob. 3CYUCh. 11.5 - Prob. 4CYUCh. 11.5 - Prob. 1ECh. 11.5 - Prob. 2ECh. 11.5 - Prob. 3ECh. 11.5 - In Exercises 14, find the Taylor series at x=0 of...Ch. 11.5 - Prob. 5ECh. 11.5 - Prob. 6ECh. 11.5 - Prob. 7ECh. 11.5 - Prob. 8ECh. 11.5 - Prob. 9ECh. 11.5 - In Exercises 520, find the Taylor series at x=0 of...Ch. 11.5 - Prob. 11ECh. 11.5 - Prob. 12ECh. 11.5 - Prob. 13ECh. 11.5 - Prob. 14ECh. 11.5 - In Exercises 520, find the Taylor series at x=0 of...Ch. 11.5 - Prob. 16ECh. 11.5 - Prob. 17ECh. 11.5 - Prob. 18ECh. 11.5 - Prob. 19ECh. 11.5 - In Exercises 520, find the Taylor series at x=0 of...Ch. 11.5 - Find the Taylor series of xex2 at x=0.Ch. 11.5 - Prob. 22ECh. 11.5 - Prob. 23ECh. 11.5 - Prob. 24ECh. 11.5 - Prob. 25ECh. 11.5 - Prob. 26ECh. 11.5 - Prob. 27ECh. 11.5 - Prob. 28ECh. 11.5 - Prob. 29ECh. 11.5 - Prob. 30ECh. 11.5 - Prob. 31ECh. 11.5 - Prob. 32ECh. 11.5 - Prob. 33ECh. 11.5 - The Taylor series at x=0 for 1+x21x is...Ch. 11.5 - Prob. 35ECh. 11.5 - Prob. 36ECh. 11.5 - Prob. 37ECh. 11.5 - Prob. 38ECh. 11.5 - In Exercises 3840, find the infinite series that...Ch. 11.5 - Prob. 40ECh. 11.5 - Prob. 41ECh. 11.5 - Prob. 42ECh. 11.5 - Prob. 43ECh. 11.5 - Prob. 44ECh. 11.5 - Prob. 45ECh. 11.5 - Prob. 46ECh. 11 - Prob. 1CCECh. 11 - Prob. 2CCECh. 11 - Prob. 3CCECh. 11 - Prob. 4CCECh. 11 - Prob. 5CCECh. 11 - Prob. 6CCECh. 11 - What is meant by the sum of a convergent infinite...Ch. 11 - Prob. 8CCECh. 11 - Prob. 9CCECh. 11 - Prob. 10CCECh. 11 - Prob. 11CCECh. 11 - Prob. 1RECh. 11 - Prob. 2RECh. 11 - Prob. 3RECh. 11 - Prob. 4RECh. 11 - Prob. 5RECh. 11 - Prob. 6RECh. 11 - Prob. 7RECh. 11 - Prob. 8RECh. 11 - Prob. 9RECh. 11 - Use the third Taylor polynomial of ln(1x) at x=0...Ch. 11 - Prob. 11RECh. 11 - Prob. 12RECh. 11 - In Exercise 1320, find the sum of the given...Ch. 11 - Prob. 14RECh. 11 - Prob. 15RECh. 11 - Prob. 16RECh. 11 - Prob. 17RECh. 11 - Prob. 18RECh. 11 - Prob. 19RECh. 11 - Prob. 20RECh. 11 - Prob. 21RECh. 11 - Prob. 22RECh. 11 - Prob. 23RECh. 11 - Prob. 24RECh. 11 - Prob. 25RECh. 11 - Prob. 26RECh. 11 - Prob. 27RECh. 11 - Prob. 28RECh. 11 - Prob. 29RECh. 11 - In Exercise 2932, find the Taylor series at x=0 of...Ch. 11 - Prob. 31RECh. 11 - Prob. 32RECh. 11 - Fine the Taylor series of cos2x at x=0, either by...Ch. 11 - Prob. 34RECh. 11 - Prob. 35RECh. 11 - Prob. 36RECh. 11 - Prob. 37RECh. 11 - Prob. 38RECh. 11 - Prob. 39RECh. 11 - Prob. 40RECh. 11 - Prob. 41RECh. 11 - Prob. 42RECh. 11 - Prob. 43RECh. 11 - Prob. 44RECh. 11 - Prob. 45RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Question 3: A sealed flask at room temperature contains a mixture of neon (Ne) and nitrogen (N2) gases. Ne has a mass of 3.25 g and exerts a pressure of 48.2 torr. . N2 contributes a pressure of 142 torr. • What is the mass of the N2 in the flask? • Atomic mass of Ne = 20.1797 g/mol • Atomic mass of N = 14.0067 g/mol Solution: We will use the Ideal Gas Law to determine the number of moles of each gas and calculate the mass of N2. PV = nRT where: • P = total pressure • V volume of the flask (same for both gases) n = number of moles of gas • R 0.0821 L atm/mol K • T = Room temperature (assume 298 K) Since both gases are in the same flask, their partial pressures correspond to their mole fractions. Step 1: Convert Pressures to Atmospheres 48.2 PNe = 0.0634 atm 760 142 PN2 = = 0.1868 atm 760 Step 2: Determine Moles of Ne nNe = mass molar mass 3.25 nNe 20.1797 nne 0.1611 mol Step 3: Use Partial Pressure Ratio to Find narrow_forward"I have written solutions in text form, but I need experts to rewrite them in handwriting from A to Z, exactly as I have written, without any changes."arrow_forward3.12 (B). A horizontal beam AB is 4 m long and of constant flexural rigidity. It is rigidly built-in at the left-hand end A and simply supported on a non-yielding support at the right-hand end B. The beam carries Uniformly distributed vertical loading of 18 kN/m over its whole length, together with a vertical downward load of 10KN at 2.5 m from the end A. Sketch the S.F. and B.M. diagrams for the beam, indicating all main values. Cl. Struct. E.] CS.F. 45,10,376 KN, B.M. 186, +36.15 kNm.7arrow_forward
- Qize f(x) = x + 2x2 - 2 x² + 4x²² - Solve the equation using Newton Raphsonarrow_forward-b±√√b2-4ac 2a @4x²-12x+9=0 27 de febrero de 2025 -b±√√b2-4ac 2a ⑥2x²-4x-1=0 a = 4 b=-12 c=9 a = 2 b = 9 c = \ x=-42±√(2-4 (4) (9) 2(4)) X = (12) ±√44)-(360) 2(108) x = ±√ X = =±√√²-4(2) (1) 2() X = ±√ + X = X = + X₁ = = X₁ = X₁ = + X₁ = = =arrow_forward3.9 (A/B). A beam ABCDE, with A on the left, is 7 m long and is simply supported at Band E. The lengths of the various portions are AB 1-5m, BC = 1-5m, CD = 1 m and DE : 3 m. There is a uniformly distributed load of 15kN/m between B and a point 2m to the right of B and concentrated loads of 20 KN act at 4 and 0 with one of 50 KN at C. (a) Draw the S.F. diagrams and hence determine the position from A at which the S.F. is zero. (b) Determine the value of the B.M. at this point. (c) Sketch the B.M. diagram approximately to scale, quoting the principal values. [3.32 m, 69.8 KNm, 0, 30, 69.1, 68.1, 0 kNm.]arrow_forward
- 4. Verify that V X (aẢ) = (Va) XẢ + aV X Ả where Ả = xyz(x + y + 2) A and a = 3xy + 4zx by carrying out the detailed differentiations.arrow_forward3. For each of the arrow or quiver graphs shown below, determine analytically V°C and V X Č. From these analytical solutions, identify the extrema (+/-) and plot these points on the arrow graph. (a) C = −✰CosxSiny + ŷSinxCosy -π<ׂу<π Ty (b) C = −xSin2y + ŷCos2y x, y<π -π< (c) C = −xCosx + ŷSiny -π< x, y < πarrow_forward7.10 (B/C). A circular flat plate of diameter 305 mm and thickness 6.35 mm is clamped at the edges and subjected to a Uniform lateral pressure of 345 kN/m². Evaluate: (a) the central deflection, (b) the position and magnitude of the maximum radial stress. C6.1 x 10 m; 149.2 MN/m².] 100 200arrow_forward
- 3.15 (B). A beam ABCD is simply supported at B and C with ABCD=2m; BC 4 m. It carries a point load of 60 KN at the free end A, a Uniformly distributed load of 60 KN/m between B and C and an anticlockwise moment of 80 KN m in the plane of the beam applied at the free end D. Sketch and dimension the S.F. and B.M. diagrams, and determine the position and magnitude of the maximum bending moment. CEL.E.] CS.F. 60, 170, 70KN, B.M. 120, +120.1, +80 kNm, 120.1 kNm at 2.83 m to right of 8.7arrow_forward7.1 (A/B). A Uniform I-section beam has flanges 150 mm wide by 8 mm thick and a web 180 mm wide and 8 mm thick. At a certain section there is a shearing force of 120 KN. Draw a diagram to illustrate the distribution of shear stress across the section as a result of bending. What is the maximum shear stress? [86.7 MN/m².arrow_forward1. Let Ả = −2x + 3y+42, B = - - 7x +lý +22, and C = −1x + 2y + 42. Find (a) Ả X B (b) ẢX B°C c) →→ Ả B X C d) ẢB°C e) ẢX B XC.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage



College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Power Series; Author: Professor Dave Explains;https://www.youtube.com/watch?v=OxVBT83x8oc;License: Standard YouTube License, CC-BY
Power Series & Intervals of Convergence; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=XHoRBh4hQNU;License: Standard YouTube License, CC-BY