
Fundamentals of Differential Equations and Boundary Value Problems
7th Edition
ISBN: 9780321977106
Author: Nagle, R. Kent
Publisher: Pearson Education, Limited
expand_more
expand_more
format_list_bulleted
Question
Chapter 11.3, Problem 12E
To determine
(a)
To determine
(b)
To determine
(c)
To determine
(d)
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
For each month of the year, Taylor collected the average high temperatures in Jackson, Mississippi. He used the data to create the histogram shown. Which set of data did he use to create the histogram?
A
55, 60, 64, 72, 73, 75, 77, 81, 83, 91, 91, 92\ 55,\ 60,\ 64,\ 72,\ 73,\ 75,\ 77,\ 81,\ 83,\ 91,\ 91,\ 92 55, 60, 64, 72, 73, 75, 77, 81, 83, 91, 91, 92
B
55, 57, 60, 65, 70, 71, 78, 79, 85, 86, 88, 91\ 55,\ 57,\ 60,\ 65,\ 70,\ 71,\ 78,\ 79,\ 85,\ 86,\ 88,\ 91 55, 57, 60, 65, 70, 71, 78, 79, 85, 86, 88, 91
C
55, 60, 63, 64, 65, 71, 83, 87, 88, 88, 89, 93\ 55,\ 60,\ 63,\ 64,\ 65,\ 71,\ 83,\ 87,\ 88,\ 88,\ 89,\ 93 55, 60, 63, 64, 65, 71, 83, 87, 88, 88, 89, 93
D
55, 58, 60, 66, 68, 75, 77, 82, 86, 89, 91, 91\ 55,\ 58,\ 60,\ 66,\ 68,\ 75,\ 77,\ 82,\ 86,\ 89,\ 91,\ 91 55, 58, 60, 66, 68, 75, 77, 82, 86, 89, 91, 91
In this problem, we consider a Brownian motion (W+) t≥0. We consider a stock model (St)t>0
given (under the measure P) by
d.St 0.03 St dt + 0.2 St dwt,
with So 2. We assume that the interest rate is r = 0.06. The purpose of this problem is to
price an option on this stock (which we name cubic put). This option is European-type, with
maturity 3 months (i.e. T = 0.25 years), and payoff given by
F = (8-5)+
(a) Write the Stochastic Differential Equation satisfied by (St) under the risk-neutral measure
Q. (You don't need to prove it, simply give the answer.)
(b) Give the price of a regular European put on (St) with maturity 3 months and strike K = 2.
(c) Let X =
S. Find the Stochastic Differential Equation satisfied by the process (Xt)
under the measure Q.
(d) Find an explicit expression for X₁ = S3 under measure Q.
(e) Using the results above, find the price of the cubic put option mentioned above.
(f) Is the price in (e) the same as in question (b)? (Explain why.)
Problem 4. Margrabe formula and the Greeks (20 pts)
In the homework, we determined the Margrabe formula for the price of an option allowing you to
swap an x-stock for a y-stock at time T. For stocks with initial values xo, yo, common volatility
σ and correlation p, the formula was given by
Fo=yo (d+)-x0Þ(d_),
where
In (±²
Ꭲ
d+
õ√T
and
σ = σ√√√2(1 - p).
дго
(a) We want to determine a "Greek" for ỡ on the option: find a formula for
θα
(b) Is
дго
θα
positive or negative?
(c) We consider a situation in which the correlation p between the two stocks increases: what
can you say about the price Fo?
(d) Assume that yo< xo and p = 1. What is the price of the option?
Chapter 11 Solutions
Fundamentals of Differential Equations and Boundary Value Problems
Ch. 11.2 - In Problems 1-12, determine the solutions, if any,...Ch. 11.2 - In Problems 1-12, determine the solutions, if any,...Ch. 11.2 - Prob. 3ECh. 11.2 - In Problems 1-12, determine the solutions, if any,...Ch. 11.2 - In Problems 1-12, determine the solutions, if any,...Ch. 11.2 - In Problems 1-12, determine the solutions, if any,...Ch. 11.2 - Prob. 7ECh. 11.2 - In Problems 1-12, determine the solutions, if any,...Ch. 11.2 - Prob. 9ECh. 11.2 - In Problems 1-12, determine the solutions, if any,...
Ch. 11.2 - Prob. 11ECh. 11.2 - In Problems 1-12, determine the solutions, if any,...Ch. 11.2 - Prob. 13ECh. 11.2 - In Problems 13-20, find all the real eigenvalues...Ch. 11.2 - In Problems 13-20, find all the real eigenvalues...Ch. 11.2 - Prob. 16ECh. 11.2 - In Problems 13-20, find all the real eigenvalues...Ch. 11.2 - In Problems 13-20, find all the real eigenvalues...Ch. 11.2 - In Problems 13-20, find all the real eigenvalues...Ch. 11.2 - In Problems 13-20, find all the real eigenvalues...Ch. 11.2 - In Problems 23-26, find all the real values of ...Ch. 11.2 - In Problems 23-26, find all the real values of ...Ch. 11.2 - In Problems 23-26, find all the real values of ...Ch. 11.2 - In Problems 23-26, find all the real values of ...Ch. 11.3 - In Problem 1-6, convert the given equation into...Ch. 11.3 - In Problem 1-6, convert the given equation into...Ch. 11.3 - Prob. 3ECh. 11.3 - In Problem 1-6, convert the given equation into...Ch. 11.3 - Prob. 5ECh. 11.3 - In Problems 1-6, convert the given equation into...Ch. 11.3 - Prob. 7ECh. 11.3 - In problem 7-11, determine whether the given...Ch. 11.3 - In problem 7-11, determine whether the given...Ch. 11.3 - Prob. 10ECh. 11.3 - Prob. 11ECh. 11.3 - Prob. 12ECh. 11.3 - Let be an eigenvalue and a corresponding...Ch. 11.3 - Prob. 15ECh. 11.3 - Show that if =u+iv is an eigenfunction...Ch. 11.3 - In Problems 17 -24, a determine the normalized...Ch. 11.3 - In Problems 17 -24, a determine the normalized...Ch. 11.3 - In Problems 17 -24, a determine the normalized...Ch. 11.3 - In Problems 17 -24, a determine the normalized...Ch. 11.3 - In Problems 17 -24, a determine the normalized...Ch. 11.3 - In Problems 17 -24, a determine the normalized...Ch. 11.3 - Prob. 25ECh. 11.3 - Prove that the linear differential operator...Ch. 11.4 - Prob. 1ECh. 11.4 - Prob. 2ECh. 11.4 - Prob. 3ECh. 11.4 - Prob. 4ECh. 11.4 - Prob. 5ECh. 11.4 - Prob. 6ECh. 11.4 - In Problems 7-10, find theadjointoperator and its...Ch. 11.4 - Prob. 8ECh. 11.4 - Prob. 9ECh. 11.4 - In Problems 7-10, find the adjoint operator and...Ch. 11.4 - Prob. 11ECh. 11.4 - Prob. 12ECh. 11.4 - Prob. 13ECh. 11.4 - Prob. 14ECh. 11.4 - Prob. 15ECh. 11.4 - Prob. 16ECh. 11.4 - Prob. 17ECh. 11.4 - Prob. 18ECh. 11.4 - Prob. 19ECh. 11.4 - Prob. 20ECh. 11.4 - Prob. 21ECh. 11.4 - Prob. 22ECh. 11.4 - Prob. 23ECh. 11.4 - Prob. 24ECh. 11.4 - Prob. 25ECh. 11.4 - Prob. 26ECh. 11.4 - Prob. 27ECh. 11.4 - Prob. 28ECh. 11.4 - Prob. 29ECh. 11.5 - Prob. 1ECh. 11.5 - In Problems 1-8, find a formal eigenfunction...Ch. 11.5 - Prob. 3ECh. 11.5 - In Problems 1-8, find a formal eigenfunction...Ch. 11.5 - Prob. 5ECh. 11.5 - Prob. 6ECh. 11.5 - Prob. 7ECh. 11.5 - Prob. 8ECh. 11.5 - In Problem 9-14, find a formal eigenfunction...Ch. 11.5 - In Problem 9-14, find a formal eigenfunction...Ch. 11.5 - Prob. 11ECh. 11.5 - Prob. 12ECh. 11.5 - In Problem 9-14, find a formal eigenfunction...Ch. 11.5 - Derive the solution to Problem 12 given in...Ch. 11.6 - Prob. 1ECh. 11.6 - Prob. 2ECh. 11.6 - Prob. 3ECh. 11.6 - Prob. 4ECh. 11.6 - Prob. 5ECh. 11.6 - In Problems 1-10, find the Greens function G(x,s)...Ch. 11.6 - Prob. 7ECh. 11.6 - Prob. 8ECh. 11.6 - Prob. 9ECh. 11.6 - Prob. 10ECh. 11.6 - In problems 11 -20, use Greens functions to solve...Ch. 11.6 - In problems 11 -20, use Greens functions to solve...Ch. 11.6 - In Problems 11-20, use Greens functions to solve...Ch. 11.6 - In Problems 11-20, use Greens functions to solve...Ch. 11.6 - In Problems 11-20, use Greens functions to solve...Ch. 11.6 - In Problems 11-20, use Greens functions to solve...Ch. 11.6 - In Problems 11-20, use Greens functions to solve...Ch. 11.6 - Derive a formula using a Greens function for the...Ch. 11.6 - Prob. 22ECh. 11.6 - Prob. 23ECh. 11.6 - Prob. 24ECh. 11.6 - Prob. 25ECh. 11.6 - Prob. 26ECh. 11.6 - Prob. 31ECh. 11.7 - Prob. 2ECh. 11.7 - Prob. 3ECh. 11.7 - Prob. 4ECh. 11.7 - Prob. 5ECh. 11.7 - Prob. 6ECh. 11.7 - Prob. 8ECh. 11.7 - Prob. 9ECh. 11.7 - Prob. 10ECh. 11.7 - Prob. 11ECh. 11.7 - Prob. 12ECh. 11.7 - Show that the only eigenfunctions of 23-24...Ch. 11.7 - a. Use formula 25 to show that Pn(x) is an odd...Ch. 11.7 - Prob. 16ECh. 11.8 - Prob. 1ECh. 11.8 - Prob. 2ECh. 11.8 - Prob. 3ECh. 11.8 - Can the function (x)=x4sin(1/x) be a solution on...Ch. 11.8 - Prob. 6ECh. 11.8 - Prob. 7ECh. 11.8 - Prob. 8ECh. 11.8 - Prob. 9ECh. 11.8 - Prob. 10ECh. 11.8 - Prob. 11ECh. 11.8 - In equation (10), assume Q(x)m2 on [a,b]. Prove...Ch. 11.8 - Prob. 13ECh. 11.8 - Show that if Q(x)m20 on [a,), then every solution...Ch. 11.RP - Find all the real eigen-values and eigen-functions...Ch. 11.RP - Prob. 2RPCh. 11.RP - a. Determine the eigenfunctions, which are...Ch. 11.RP - Prob. 4RPCh. 11.RP - Use the Fredholm alternative to determine...Ch. 11.RP - Find the formal eigenfunction expansion for the...Ch. 11.RP - Find the Greens function G(x,s) and use it to...Ch. 11.RP - Find a formal eigenfunction expansion for the...Ch. 11.RP - Let (x) be a nontrivial solution to...Ch. 11.RP - Use Corollary 5 in Section 11.8 to estimate the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- The Course Name Real Analysis please Solve questions by Real Analysisarrow_forwardWe consider a 4-dimensional stock price model given (under P) by dẴ₁ = µ· Xt dt + йt · ΣdŴt where (W) is an n-dimensional Brownian motion, π = (0.02, 0.01, -0.02, 0.05), 0.2 0 0 0 0.3 0.4 0 0 Σ= -0.1 -4a За 0 0.2 0.4 -0.1 0.2) and a E R. We assume that ☑0 = (1, 1, 1, 1) and that the interest rate on the market is r = 0.02. (a) Give a condition on a that would make stock #3 be the one with largest volatility. (b) Find the diversification coefficient for this portfolio as a function of a. (c) Determine the maximum diversification coefficient d that you could reach by varying the value of a? 2arrow_forwardQuestion 1. Your manager asks you to explain why the Black-Scholes model may be inappro- priate for pricing options in practice. Give one reason that would substantiate this claim? Question 2. We consider stock #1 and stock #2 in the model of Problem 2. Your manager asks you to pick only one of them to invest in based on the model provided. Which one do you choose and why ? Question 3. Let (St) to be an asset modeled by the Black-Scholes SDE. Let Ft be the price at time t of a European put with maturity T and strike price K. Then, the discounted option price process (ert Ft) t20 is a martingale. True or False? (Explain your answer.) Question 4. You are considering pricing an American put option using a Black-Scholes model for the underlying stock. An explicit formula for the price doesn't exist. In just a few words (no more than 2 sentences), explain how you would proceed to price it. Question 5. We model a short rate with a Ho-Lee model drt = ln(1+t) dt +2dWt. Then the interest rate…arrow_forward
- In this problem, we consider a Brownian motion (W+) t≥0. We consider a stock model (St)t>0 given (under the measure P) by d.St 0.03 St dt + 0.2 St dwt, with So 2. We assume that the interest rate is r = 0.06. The purpose of this problem is to price an option on this stock (which we name cubic put). This option is European-type, with maturity 3 months (i.e. T = 0.25 years), and payoff given by F = (8-5)+ (a) Write the Stochastic Differential Equation satisfied by (St) under the risk-neutral measure Q. (You don't need to prove it, simply give the answer.) (b) Give the price of a regular European put on (St) with maturity 3 months and strike K = 2. (c) Let X = S. Find the Stochastic Differential Equation satisfied by the process (Xt) under the measure Q. (d) Find an explicit expression for X₁ = S3 under measure Q. (e) Using the results above, find the price of the cubic put option mentioned above. (f) Is the price in (e) the same as in question (b)? (Explain why.)arrow_forward3. Consider the polynomial equation 6-iz+7z² - iz³ +z = 0 for which the roots are 3i, -2i, -i, and i. (a) Verify the relations between this roots and the coefficients of the polynomial. (b) Find the annulus region in which the roots lie.arrow_forwardThe managing director of a consulting group has the accompanying monthly data on total overhead costs and professional labor hours to bill to clients. Complete parts a through c. Question content area bottom Part 1 a. Develop a simple linear regression model between billable hours and overhead costs. Overhead Costsequals=212495.2212495.2plus+left parenthesis 42.4857 right parenthesis42.485742.4857times×Billable Hours (Round the constant to one decimal place as needed. Round the coefficient to four decimal places as needed. Do not include the $ symbol in your answers.) Part 2 b. Interpret the coefficients of your regression model. Specifically, what does the fixed component of the model mean to the consulting firm? Interpret the fixed term, b 0b0, if appropriate. Choose the correct answer below. A. The value of b 0b0 is the predicted billable hours for an overhead cost of 0 dollars. B. It is not appropriate to interpret b 0b0, because its value…arrow_forward
- 3. Consider the polynomial equation 6-iz+7z2-iz³ +z = 0 for which the roots are 3i, -2i, -i, and i. (a) Verify the relations between this roots and the coefficients of the polynomial. (b) Find the annulus region in which the roots lie.arrow_forwardWrite the equation of the trigonometric function shown in the graph. LO 5 4 3 2 1 y -5 -5 4 8 8 500 -1 -2 -3 -4 -5 x 5 15л 5л 25л 15л 35π 5л 4 8 2 8 4 8arrow_forwardc) Using only Laplace transforms solve the following Samuelson model given below i.e., the second order difference equation (where yt is national income): - Yt+2 6yt+1+5y₁ = 0, if y₁ = 0 for t < 0, and y₁ = 0, y₁ = 1 1-e-s You may use without proof that L-1[s(1-re-s)] = f(t) = r² for n ≤tarrow_forward5. 156 m/WXY = 59° 63 E 7. B E 101 C mFE = 6. 68° 8. C 17arrow_forwardScoring: MATH 15 FILING /10 COMPARISON /10 RULER I 13 Express EMPLOYMENT PROFESSIONALS NAME: SKILLS EVALUATION TEST- Light Industrial MATH-Solve the following problems. (Feel free to use a calculator.) DATE: 1. If you were asked to load 225 boxes onto a truck, and the boxes are crated, with each crate containing nine boxes, how many crates would you need to load? 2. Imagine you live only one mile from work and you decide to walk. If you walk four miles per hour, how long will it take you to walk one mile? 3. Add 3 feet 6 inches + 8 feet 2 inches + 4 inches + 2 feet 5 inches. 4. In a grocery store, steak costs $3.85 per pound. If you buy a three-pound steak and pay for it with a $20 bill, how much change will you get? 5. Add 8 minutes 32 seconds + 37 minutes 18 seconds + 15 seconds. FILING - In the space provided, write the number of the file cabinet where the company should be filed. Example: File Cabinet #4 Elson Co. File Cabinets: 1. Aa-Bb 3. Cg-Dz 5. Ga-Hz 7. La-Md 9. Na-Oz 2. Bc-Cf…arrow_forwardpart 3 of the question is: A power outage occurs 6 min after the ride started. Passengers must wait for their cage to be manually cranked into the lowest position in order to exit the ride. Sine function model: where h is the height of the last passenger above the ground measured in feet and t is the time of operation of the ride in minutes. What is the height of the last passenger at the moment of the power outage? Verify your answer by evaluating the sine function model. Will the last passenger to board the ride need to wait in order to exit the ride? Explain.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,

Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning

Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning

Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Orthogonality in Inner Product Spaces; Author: Study Force;https://www.youtube.com/watch?v=RzIx_rRo9m0;License: Standard YouTube License, CC-BY
Abstract Algebra: The definition of a Group; Author: Socratica;https://www.youtube.com/watch?v=QudbrUcVPxk;License: Standard Youtube License