EBK MATHEMATICS ALL AROUND
6th Edition
ISBN: 8220103632027
Author: Pirnot
Publisher: Pearson Education (US)
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11.2, Problem 29E
Make a preference table, similar to the one given in Example 5, with at least five different types of ballots and four choices that shows that the plurality-with-elimination method violates the monotonicity criterion.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Total marks 15
3.
(i)
Let FRN Rm be a mapping and x = RN is a given
point. Which of the following statements are true? Construct counterex-
amples for any that are false.
(a)
If F is continuous at x then F is differentiable at x.
(b)
If F is differentiable at x then F is continuous at x.
If F is differentiable at x then F has all 1st order partial
(c)
derivatives at x.
(d) If all 1st order partial derivatives of F exist and are con-
tinuous on RN then F is differentiable at x.
[5 Marks]
(ii) Let mappings
F= (F1, F2) R³ → R² and
G=(G1, G2) R² → R²
:
be defined by
F₁ (x1, x2, x3) = x1 + x²,
G1(1, 2) = 31,
F2(x1, x2, x3) = x² + x3,
G2(1, 2)=sin(1+ y2).
By using the chain rule, calculate the Jacobian matrix of the mapping
GoF R3 R²,
i.e., JGoF(x1, x2, x3). What is JGOF(0, 0, 0)?
(iii)
[7 Marks]
Give reasons why the mapping Go F is differentiable at
(0, 0, 0) R³ and determine the derivative matrix D(GF)(0, 0, 0).
[3 Marks]
5.
(i)
Let f R2 R be defined by
f(x1, x2) = x² - 4x1x2 + 2x3.
Find all local minima of f on R².
(ii)
[10 Marks]
Give an example of a function f: R2 R which is not bounded
above and has exactly one critical point, which is a minimum. Justify briefly
Total marks 15
your answer.
[5 Marks]
Total marks 15
4.
:
Let f R2 R be defined by
f(x1, x2) = 2x²- 8x1x2+4x+2.
Find all local minima of f on R².
[10 Marks]
(ii) Give an example of a function f R2 R which is neither
bounded below nor bounded above, and has no critical point. Justify
briefly your answer.
[5 Marks]
Chapter 11 Solutions
EBK MATHEMATICS ALL AROUND
Ch. 11.1 - Four candidates running for a vacant seat on the...Ch. 11.1 - Five candidates running for mayor receive votes as...Ch. 11.1 - The university administration has asked a group of...Ch. 11.1 - The university administration has asked a group of...Ch. 11.1 - The university administration has asked a group of...Ch. 11.1 - The university administration has asked a group of...Ch. 11.1 - The drama society members are voting for the type...Ch. 11.1 - The drama society members are voting for the type...Ch. 11.1 - The drama society members are voting for the type...Ch. 11.1 - The drama society members are voting for the type...
Ch. 11.1 - Before a conference on Trends in the next Decade,...Ch. 11.1 - Before a conference on Trends in the next Decade,...Ch. 11.1 - Prob. 13ECh. 11.1 - Prob. 14ECh. 11.1 - A small employee-owned Internet company is voting...Ch. 11.1 - Prob. 16ECh. 11.1 - Prob. 17ECh. 11.1 - A small employee-owned Internet company is voting...Ch. 11.1 - Prob. 19ECh. 11.1 - Prob. 20ECh. 11.1 - Prob. 21ECh. 11.1 - Prob. 22ECh. 11.1 - In Exercises 23-26, refer to the preference table...Ch. 11.1 - Prob. 24ECh. 11.1 - In Exercises 23-26, refer to the preference table...Ch. 11.1 - Prob. 26ECh. 11.1 - In Exercises 27-30, refer to the preference table...Ch. 11.1 - In Exercises 27-30, refer to the preference table...Ch. 11.1 - In Exercises 27-30, refer to the preference table...Ch. 11.1 - Prob. 30ECh. 11.1 - Prob. 31ECh. 11.1 - Prob. 32ECh. 11.1 - Prob. 33ECh. 11.1 - Prob. 34ECh. 11.1 - Prob. 35ECh. 11.1 - Prob. 36ECh. 11.1 - Prob. 37ECh. 11.1 - Prob. 38ECh. 11.1 - Prob. 39ECh. 11.1 - Prob. 40ECh. 11.1 - Prob. 41ECh. 11.1 - Prob. 42ECh. 11.1 - Prob. 43ECh. 11.1 - Math in Your Life: Between the Numbers Instant...Ch. 11.1 - In approval voting, a person can vote for more...Ch. 11.1 - Prob. 46ECh. 11.1 - Prob. 47ECh. 11.1 - Prob. 48ECh. 11.1 - Prob. 49ECh. 11.1 - Prob. 50ECh. 11.1 - Prob. 51ECh. 11.1 - Prob. 52ECh. 11.2 - Some of these exercises have no fixed solution...Ch. 11.2 - Some of these exercises have no fixed solution...Ch. 11.2 - Determining the legal drinking age. A state...Ch. 11.2 - Voting for the president of a club. A chapter of...Ch. 11.2 - Choosing a location for a research facility. Teach...Ch. 11.2 - Locating a new factory. The Land Mover Tractor...Ch. 11.2 - Reducing a budget. Due to a decrease in state...Ch. 11.2 - Voting on an award for best restaurant. A group of...Ch. 11.2 - Use the following preference table for Exercises 9...Ch. 11.2 - Use the following preference table for Exercises 9...Ch. 11.2 - Complete the preference table so that the Borda...Ch. 11.2 - Complete the preference table so that A is the...Ch. 11.2 - Prob. 13ECh. 11.2 - Make a preference table similar to the one given...Ch. 11.2 - Complete the preference table so that the...Ch. 11.2 - Does the plurality method satisfy the majority...Ch. 11.2 - Does the plurality-with-elimination method satisfy...Ch. 11.2 - Prob. 18ECh. 11.2 - Presidential election. One of the several...Ch. 11.2 - Prob. 20ECh. 11.2 - Prob. 21ECh. 11.2 - A run off election. Repeat Exercise 21 using this...Ch. 11.2 - Prob. 23ECh. 11.2 - Prob. 24ECh. 11.2 - Prob. 25ECh. 11.2 - Prob. 26ECh. 11.2 - Prob. 27ECh. 11.2 - Voters are choosing among five options. Make a...Ch. 11.2 - Make a preference table, similar to the one given...Ch. 11.2 - Prob. 30ECh. 11.2 - Prob. 31ECh. 11.2 - Prob. 32ECh. 11.2 - Prob. 33ECh. 11.2 - Prob. 34ECh. 11.2 - One of the voting methods we have been discussing...Ch. 11.3 - Prob. 1ECh. 11.3 - Prob. 2ECh. 11.3 - In Exercises 1-12, the weight represent voters A,...Ch. 11.3 - Prob. 4ECh. 11.3 - Prob. 5ECh. 11.3 - Prob. 6ECh. 11.3 - In Exercises 1-12, the weight represent voters A,...Ch. 11.3 - In Exercises 1-12, the weight represent voters A,...Ch. 11.3 - In Exercises 1-12, the weight represent voters A,...Ch. 11.3 - Prob. 10ECh. 11.3 - Prob. 11ECh. 11.3 - Prob. 12ECh. 11.3 - In Exercises 13-16, write out all winning...Ch. 11.3 - Prob. 14ECh. 11.3 - In Exercises 13-16, write out all winning...Ch. 11.3 - Prob. 16ECh. 11.3 - Prob. 17ECh. 11.3 - Prob. 18ECh. 11.3 - Prob. 19ECh. 11.3 - Prob. 20ECh. 11.3 - Prob. 21ECh. 11.3 - Prob. 22ECh. 11.3 - Prob. 23ECh. 11.3 - Prob. 24ECh. 11.3 - Prob. 25ECh. 11.3 - Prob. 26ECh. 11.3 - Prob. 27ECh. 11.3 - Prob. 28ECh. 11.3 - Prob. 29ECh. 11.3 - Prob. 30ECh. 11.3 - Prob. 31ECh. 11.3 - Prob. 32ECh. 11.3 - In Exercises 29-34, determine the Banzhaf power...Ch. 11.3 - Prob. 34ECh. 11.3 - The system [3:1,1,1,1,1] is an example of a one...Ch. 11.3 - Prob. 36ECh. 11.3 - Consider the system [14:15,2,3,3,5] in which A is...Ch. 11.3 - Prob. 38ECh. 11.3 - Calculating power in the electoral college. After...Ch. 11.3 - Prob. 40ECh. 11.3 - Prob. 41ECh. 11.3 - Prob. 42ECh. 11.3 - Prob. 43ECh. 11.3 - In Example 5, we analyzed the voting power of the...Ch. 11.3 - In Example 5, we analyzed the voting power of the...Ch. 11.3 - Prob. 46ECh. 11.3 - Prob. 47ECh. 11.3 - Prob. 48ECh. 11.3 - Prob. 49ECh. 11.3 - Prob. 50ECh. 11.3 - A dummy in a weighted voting system is a voter...Ch. 11.3 - Prob. 52ECh. 11.3 - Prob. 53ECh. 11.3 - Prob. 54ECh. 11.3 - In Exercises 55 and 56, devise a voting system...Ch. 11.3 - Prob. 56ECh. 11.4 - In Exercises 1 4, use tree diagrams to find all...Ch. 11.4 - Prob. 2ECh. 11.4 - In Exercises 1 4, use tree diagrams to find all...Ch. 11.4 - Prob. 4ECh. 11.4 - Prob. 5ECh. 11.4 - Prob. 6ECh. 11.4 - Prob. 7ECh. 11.4 - Prob. 8ECh. 11.4 - Prob. 9ECh. 11.4 - Prob. 10ECh. 11.4 - Prob. 11ECh. 11.4 - Prob. 12ECh. 11.4 - In Exercises 1116, determine the Shapley-Shubik...Ch. 11.4 - Prob. 14ECh. 11.4 - Prob. 15ECh. 11.4 - Prob. 16ECh. 11.4 - The system [3:1,1,1,1,1] is an example of a one...Ch. 11.4 - Measuring power on a jury. We can consider a...Ch. 11.4 - Prob. 19ECh. 11.4 - Prob. 20ECh. 11.4 - Prob. 21ECh. 11.4 - Measuring power on a theater guild. The Theater...Ch. 11.4 - Measuring power on a state committee. The college...Ch. 11.4 - Prob. 24ECh. 11.4 - Prob. 25ECh. 11.4 - A new social media company, Chirp, has an...Ch. 11.4 - Prob. 27ECh. 11.4 - Measuring power among states. Repeat Exercise 27...Ch. 11.4 - Explain the difference between the Banzhaf index...Ch. 11.4 - Prob. 30ECh. 11.4 - Prob. 31ECh. 11.4 - Prob. 32ECh. 11.4 - Prob. 33ECh. 11.4 - Prob. 34ECh. 11.CR - Prob. 1CRCh. 11.CR - Prob. 2CRCh. 11.CR - Prob. 3CRCh. 11.CR - Prob. 4CRCh. 11.CR - Prob. 5CRCh. 11.CR - Prob. 6CRCh. 11.CR - Prob. 7CRCh. 11.CR - Prob. 8CRCh. 11.CR - Prob. 9CRCh. 11.CR - Prob. 10CRCh. 11.CR - Prob. 11CRCh. 11.CR - Prob. 12CRCh. 11.CR - Prob. 13CRCh. 11.CR - Prob. 14CRCh. 11.CR - Prob. 15CRCh. 11.CR - Prob. 16CRCh. 11.CR - Prob. 17CRCh. 11.CR - Prob. 18CRCh. 11.CT - Prob. 1CTCh. 11.CT - Prob. 2CTCh. 11.CT - Prob. 3CTCh. 11.CT - Prob. 4CTCh. 11.CT - Prob. 5CTCh. 11.CT - Prob. 6CTCh. 11.CT - Prob. 7CTCh. 11.CT - Prob. 8CTCh. 11.CT - Prob. 9CTCh. 11.CT - Determine the Banzhaf power index for each voter...Ch. 11.CT - Prob. 11CTCh. 11.CT - Prob. 12CTCh. 11.CT - Prob. 13CTCh. 11.CT - Prob. 14CTCh. 11.CT - Prob. 15CTCh. 11.CT - Prob. 16CT
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 4. Let F RNR be a mapping. (i) x ЄRN ? (ii) : What does it mean to say that F is differentiable at a point [1 Mark] In Theorem 5.4 in the Lecture Notes we proved that if F is differentiable at a point x E RN then F is continuous at x. Proof. Let (n) CRN be a sequence such that xn → x ЄERN as n → ∞. We want to show that F(xn) F(x), which means F is continuous at x. Denote hnxn - x, so that ||hn|| 0. Thus we find ||F(xn) − F(x)|| = ||F(x + hn) − F(x)|| * ||DF (x)hn + R(hn) || (**) ||DF(x)hn||+||R(hn)||| → 0, because the linear mapping DF(x) is continuous and for all large nЄ N, (***) ||R(hn) || ||R(hn) || ≤ → 0. ||hn|| (a) Explain in details why ||hn|| → 0. [3 Marks] (b) Explain the steps labelled (*), (**), (***). [6 Marks]arrow_forward4. In Theorem 5.4 in the Lecture Notes we proved that if F: RN → Rm is differentiable at x = RN then F is continuous at x. Proof. Let (xn) CRN be a sequence such that x → x Є RN as n → ∞. We want F(x), which means F is continuous at x. to show that F(xn) Denote hn xnx, so that ||hn||| 0. Thus we find ||F (xn) − F(x) || (*) ||F(x + hn) − F(x)|| = ||DF(x)hn + R(hn)|| (**) ||DF(x)hn|| + ||R(hn) || → 0, because the linear mapping DF(x) is continuous and for all large n = N, |||R(hn) || ≤ (***) ||R(hn)|| ||hn|| → 0. Explain the steps labelled (*), (**), (***) [6 Marks] (ii) Give an example of a function F: RR such that F is contin- Total marks 10 uous at x=0 but F is not differentiable at at x = 0. [4 Marks]arrow_forward3. Let f R2 R be a function. (i) Explain in your own words the relationship between the existence of all partial derivatives of f and differentiability of f at a point x = R². (ii) Consider R2 → R defined by : [5 Marks] f(x1, x2) = |2x1x2|1/2 Show that af af -(0,0) = 0 and -(0, 0) = 0, Jx1 მx2 but f is not differentiable at (0,0). [10 Marks]arrow_forward
- 13) Consider the checkerboard arrangement shown below. Assume that the red checker can move diagonally upward, one square at a time, on the white squares. It may not enter a square if occupied by another checker, but may jump over it. How many routes are there for the red checker to the top of the board?arrow_forwardFill in the blanks to describe squares. The square of a number is that number Question Blank 1 of 4 . The square of negative 12 is written as Question Blank 2 of 4 , but the opposite of the square of 12 is written as Question Blank 3 of 4 . 2 • 2 = 4. Another number that can be multiplied by itself to equal 4 is Question Blank 4 of 4 .arrow_forward12) The prime factors of 1365 are 3, 5, 7 and 13. Determine the total number of divisors of 1365.arrow_forward
- 11) What is the sum of numbers in row #8 of Pascal's Triangle?arrow_forward14) Seven students and three teachers wish to join a committee. Four of them will be selected by the school administration. What is the probability that three students and one teacher will be selected?arrow_forward(1) Write the following quadratic equation in terms of the vertex coordinates.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Statistics 4.1 Introduction to Inferential Statistics; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=QLo4TEvBvK4;License: Standard YouTube License, CC-BY