
Bundle: Differential Equations with Boundary-Value Problems, Loose-leaf Version, 9th + WebAssign Printed Access Card for Zill's Differential Equations ... Problems, 9th Edition, Single-Term
9th Edition
ISBN: 9781337604901
Author: Dennis G. Zill
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 11.2, Problem 24E
To determine
The complex form of the Fourier series of given function.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(3) (16 points) Consider
z = uv,
u = x+y,
v=x-y.
(a) (4 points) Express z in the form z = fog where g: R² R² and f: R² →
R.
(b) (4 points) Use the chain rule to calculate Vz = (2, 2). Show all intermediate
steps otherwise no credit.
(c) (4 points) Let S be the surface parametrized by
T(x, y) = (x, y, ƒ (g(x, y))
(x, y) = R².
Give a parametric description of the tangent plane to S at the point p = T(x, y).
(d) (4 points) Calculate the second Taylor polynomial Q(x, y) (i.e. the quadratic
approximation) of F = (fog) at a point (a, b). Verify that
Q(x,y) F(a+x,b+y).
=
(6) (8 points) Change the order of integration and evaluate
(z +4ry)drdy .
So S√ ²
0
(10) (16 points) Let R>0. Consider the truncated sphere S given as
x² + y² + (z = √15R)² = R², z ≥0.
where F(x, y, z) = −yi + xj .
(a) (8 points) Consider the vector field
V (x, y, z) = (▼ × F)(x, y, z)
Think of S as a hot-air balloon where the vector field V is the velocity vector
field measuring the hot gasses escaping through the porous surface S. The flux
of V across S gives the volume flow rate of the gasses through S. Calculate
this flux.
Hint: Parametrize the boundary OS. Then use Stokes' Theorem.
(b) (8 points) Calculate the surface area of the balloon. To calculate the surface
area, do the following:
Translate the balloon surface S by the vector (-15)k. The translated
surface, call it S+ is part of the sphere x² + y²+z² = R².
Why do S and S+ have the same area?
⚫ Calculate the area of S+. What is the natural spherical parametrization
of S+?
Chapter 11 Solutions
Bundle: Differential Equations with Boundary-Value Problems, Loose-leaf Version, 9th + WebAssign Printed Access Card for Zill's Differential Equations ... Problems, 9th Edition, Single-Term
Ch. 11.1 - In problem 16 show that the given functions are...Ch. 11.1 - In problem 16 show that the given functions are...Ch. 11.1 - In problem 16 show that the given functions are...Ch. 11.1 - In problem 16 show that the given functions are...Ch. 11.1 - In problem 16 show that the given functions are...Ch. 11.1 - Prob. 6ECh. 11.1 - Prob. 7ECh. 11.1 - In Problems 712 show that the given set of...Ch. 11.1 - In Problems 712 show that the given set of...Ch. 11.1 - In Problems 712 show that the given set of...
Ch. 11.1 - In Problems 712 show that the given set of...Ch. 11.1 - In Problems 712 show that the given set of...Ch. 11.1 - In Problems 13 and 14 verify by direct integration...Ch. 11.1 - In Problems 13 and 14 verify by direct integration...Ch. 11.1 - Let {n(x)} be an orthogonal set of functions on...Ch. 11.1 - Let {n(x)} be an orthogonal set of functions on...Ch. 11.1 - Let {n(x)} be an orthogonal set of functions on...Ch. 11.1 - From Problem 1 we know that f1(x) = x and f2(x) =...Ch. 11.1 - A real-valued function is said to be periodic with...Ch. 11.1 - A real-valued function is said to be periodic with...Ch. 11.1 - Prob. 21ECh. 11.1 - A real-valued function is said to be periodic with...Ch. 11.1 - A real-valued function is said to be periodic with...Ch. 11.1 - A real-valued function is said to be periodic with...Ch. 11.1 - Prob. 25ECh. 11.1 - Prob. 26ECh. 11.1 - Prob. 27ECh. 11.1 - Relate the orthogonal set B in Problem 27 with a...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 1–16 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - Prob. 13ECh. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 17 and 18 sketch the periodic...Ch. 11.2 - In Problems 17 and 18 sketch the periodic...Ch. 11.2 - Use the result of Problem 5 to show that...Ch. 11.2 - Prob. 20ECh. 11.2 - Use the result of Problem 7 to show that...Ch. 11.2 - Prob. 22ECh. 11.2 - Prob. 23ECh. 11.2 - Prob. 24ECh. 11.3 - In Problems 110 determine whether the function is...Ch. 11.3 - Prob. 2ECh. 11.3 - In Problems 110 determine whether the function is...Ch. 11.3 - In Problems 110 determine whether the function is...Ch. 11.3 - Prob. 5ECh. 11.3 - Prob. 6ECh. 11.3 - Prob. 7ECh. 11.3 - Prob. 8ECh. 11.3 - Prob. 9ECh. 11.3 - Prob. 10ECh. 11.3 - In Problems 1124 expand the given function in an...Ch. 11.3 - In Problems 1124 expand the given function in an...Ch. 11.3 - In Problems 1124 expand the given function in an...Ch. 11.3 - In Problems 1124 expand the given function in an...Ch. 11.3 - Prob. 15ECh. 11.3 - In Problems 11-24 expand the given function in an...Ch. 11.3 - Prob. 17ECh. 11.3 - In Problems 11-24 expand the given function in an...Ch. 11.3 - In Problems 11-24 expand the given function in an...Ch. 11.3 - In Problems 1-10 determine whether the function is...Ch. 11.3 - In Problems 1-10 determine whether the function is...Ch. 11.3 - In Problems 1124 expand the given function in an...Ch. 11.3 - In Problems 1124 expand the given function in an...Ch. 11.3 - Prob. 24ECh. 11.3 - In Problems 2534 find the half-range cosine and...Ch. 11.3 - Prob. 26ECh. 11.3 - Prob. 27ECh. 11.3 - In Problems 2534 find the half-range cosine and...Ch. 11.3 - Prob. 29ECh. 11.3 - Prob. 30ECh. 11.3 - Prob. 31ECh. 11.3 - In Problems 2534 find the half-range cosine and...Ch. 11.3 - In Problems 2534 find the half-range cosine and...Ch. 11.3 - Prob. 34ECh. 11.3 - In Problems 3538 expand the given function in a...Ch. 11.3 - In Problems 3538 expand the given function in a...Ch. 11.3 - Prob. 37ECh. 11.3 - In Problems 3538 expand the given function in a...Ch. 11.3 - Prob. 39ECh. 11.3 - In Problems 3942 suppose the function y = f(x), 0 ...Ch. 11.3 - In Problems 3942 suppose the function y = f(x), 0 ...Ch. 11.3 - Prob. 42ECh. 11.3 - In Problems 43 and 44 proceed as in Example 4 to...Ch. 11.3 - In Problems 43 and 44 proceed as in Example 4 to...Ch. 11.3 - Prob. 45ECh. 11.3 - Prob. 46ECh. 11.3 - Suppose a uniform beam of length L is simply...Ch. 11.3 - Prob. 50ECh. 11.3 - Prob. 51ECh. 11.3 - Prob. 52ECh. 11.3 - Prob. 53ECh. 11.3 - Prob. 54ECh. 11.4 - Consider y + y = 0 subject to y(0) = 0, y(L) = 0....Ch. 11.4 - Consider y + y = 0 subject to the periodic...Ch. 11.4 - Prob. 5ECh. 11.4 - Prob. 6ECh. 11.4 - (a) Find the eigenvalues and eigenfunctions of the...Ch. 11.4 - (a) Find the eigenvalues and eigenfunctions of the...Ch. 11.4 - Laguerres differential equation xy + (1 x)y + ny...Ch. 11.4 - Hermites differential equation y2xy+2ny=0,n=0,1,2,...Ch. 11.4 - Consider the regular Sturm-Liouville problem:...Ch. 11.4 - (a) Find the eigenfunctions and the equation that...Ch. 11.4 - Prob. 13ECh. 11.5 - Prob. 1ECh. 11.5 - Prob. 2ECh. 11.5 - Prob. 3ECh. 11.5 - Prob. 4ECh. 11.5 - In Problems 36 expand f(x) = 1, 0 x 2, in a...Ch. 11.5 - In Problems 36 expand f(x) = 1, 0 x 2, in a...Ch. 11.5 - In Problems 7-10 expand the given function in a...Ch. 11.5 - Prob. 8ECh. 11.5 - Prob. 9ECh. 11.5 - Prob. 10ECh. 11.5 - Prob. 13ECh. 11.5 - Prob. 14ECh. 11.5 - In Problems 15 and 16 write out the first five...Ch. 11.5 - Prob. 16ECh. 11.5 - Prob. 17ECh. 11.5 - Prob. 18ECh. 11.5 - Prob. 19ECh. 11.5 - Prob. 20ECh. 11.5 - Prob. 21ECh. 11.5 - Prob. 22ECh. 11.5 - Prob. 23ECh. 11.5 - Prob. 24ECh. 11 - In Problems 16 fill in the blank or answer true or...Ch. 11 - Prob. 2RECh. 11 - Prob. 3RECh. 11 - Prob. 4RECh. 11 - Prob. 5RECh. 11 - Prob. 6RECh. 11 - Prob. 7RECh. 11 - Prob. 8RECh. 11 - Prob. 9RECh. 11 - Prob. 10RECh. 11 - Prob. 11RECh. 11 - Prob. 12RECh. 11 - Prob. 13RECh. 11 - Prob. 14RECh. 11 - Prob. 15RECh. 11 - Prob. 16RECh. 11 - Prob. 17RECh. 11 - Consider the portion of the periodic function f...Ch. 11 - Prob. 19RECh. 11 - Find the eigenvalues and eigenfunctions of the...Ch. 11 - Prob. 21RECh. 11 - Prob. 22RECh. 11 - Prob. 23RECh. 11 - Prob. 24RECh. 11 - Prob. 25RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- (1) (8 points) Let c(t) = (et, et sint, et cost). Reparametrize c as a unit speed curve starting from the point (1,0,1).arrow_forward(9) (16 points) Let F(x, y, z) = (x² + y − 4)i + 3xyj + (2x2 +z²)k = - = (x²+y4,3xy, 2x2 + 2²). (a) (4 points) Calculate the divergence and curl of F. (b) (6 points) Find the flux of V x F across the surface S given by x² + y²+2² = 16, z ≥ 0. (c) (6 points) Find the flux of F across the boundary of the unit cube E = [0,1] × [0,1] x [0,1].arrow_forward(8) (12 points) (a) (8 points) Let C be the circle x² + y² = 4. Let F(x, y) = (2y + e²)i + (x + sin(y²))j. Evaluate the line integral JF. F.ds. Hint: First calculate V x F. (b) (4 points) Let S be the surface r² + y² + z² = 4, z ≤0. Calculate the flux integral √(V × F) F).dS. Justify your answer.arrow_forward
- Determine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. a = 13, b = 15, C = 68° Law of Sines Law of Cosines Then solve the triangle. (Round your answers to four decimal places.) C = 15.7449 A = 49.9288 B = 62.0712 × Need Help? Read It Watch Itarrow_forward(4) (10 points) Evaluate √(x² + y² + z²)¹⁄² exp[}(x² + y² + z²)²] dV where D is the region defined by 1< x² + y²+ z² ≤4 and √√3(x² + y²) ≤ z. Note: exp(x² + y²+ 2²)²] means el (x²+ y²+=²)²]¸arrow_forward(2) (12 points) Let f(x,y) = x²e¯. (a) (4 points) Calculate Vf. (b) (4 points) Given x directional derivative 0, find the line of vectors u = D₁f(x, y) = 0. (u1, 2) such that the - (c) (4 points) Let u= (1+3√3). Show that Duƒ(1, 0) = ¦|▼ƒ(1,0)| . What is the angle between Vf(1,0) and the vector u? Explain.arrow_forward
- Find the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a b 29 39 66.50 C 17.40 d 0 54.0 126° a Ꮎ b darrow_forwardAnswer the following questions related to the following matrix A = 3 ³).arrow_forward(5) (10 points) Let D be the parallelogram in the xy-plane with vertices (0, 0), (1, 1), (1, 1), (0, -2). Let f(x,y) = xy/2. Use the linear change of variables T(u, v)=(u,u2v) = (x, y) 1 to calculate the integral f(x,y) dA= 0 ↓ The domain of T is a rectangle R. What is R? |ǝ(x, y) du dv. |ð(u, v)|arrow_forward
- 2 Anot ined sove in peaper PV+96252 Q3// Find the volume of the region between the cylinder z = y2 and the xy- plane that is bounded by the planes x=1, x=2,y=-2,andy=2. vertical rect a Q4// Draw and Evaluate Soxy-2sin (ny2)dydx D Lake tarrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. B 13 cm 97° Law of Sines Law of Cosines A 43° Then solve the triangle. (Round your answers to two decimal places.) b = x C = A = 40.00arrow_forward13' - 3π 2 < u <- π and tan v 5 14) Find the exact value given that sin u = a) sin(u-v) b) cos(u+v) c) tan(u-v) d) cos(2u) == √³, 1 < v < π.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
But what is the Fourier Transform? A visual introduction.; Author: 3Blue1Brown;https://www.youtube.com/watch?v=spUNpyF58BY;License: Standard YouTube License, CC-BY