Concept explainers
Using Yates’s Correction for Continuity The chi-square distribution is continuous, whereas the test statistic used in this section is discrete. Some statisticians use Yates's correction for continuity in cells with an expected frequency of less than 10 or in all cells of a
Given the contingency table in Exercise 9 “Four Quarters the Same as $1?” find the value of the X2 test statistic using Yates’s correction in all cells. What effect does Yates’s correction have?
9. Four Quarters the Same as $1? In a study of the “denomination effect,” 43 college students were each given one dollar in the form of four quarters, while 46 other college students were each given one dollar in the form of a dollar bill. All of the students were then given two choices: (1) keep the money; (2) spend the money on gum. The results are given in the accompanying table (based on ‘The Denomination Effect.” by Priya Raghubir and Joydeep Srivastava, Journal of Consumer Research, Vol. 36.) Use a 0.05 significance level to test the claim that whether students purchased gum or kept the money is independent of whether they were given four quarters or a $1 bill. Is there a “denomination effect”?
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
MYLAB STATISTICS W/ETEXT ACCESS CARD
- Exercise 4.2 Prove that, if A and B are independent, then so are A and B, Ac and B, and A and B.arrow_forward8. Show that, if {Xn, n ≥ 1) are independent random variables, then sup X A) < ∞ for some A.arrow_forward8- 6. Show that, for any random variable, X, and a > 0, 8 心 P(xarrow_forward15. This problem extends Problem 20.6. Let X, Y be random variables with finite mean. Show that 00 (P(X ≤ x ≤ Y) - P(X ≤ x ≤ X))dx = E Y — E X.arrow_forward(b) Define a simple random variable. Provide an example.arrow_forward17. (a) Define the distribution of a random variable X. (b) Define the distribution function of a random variable X. (c) State the properties of a distribution function. (d) Explain the difference between the distribution and the distribution function of X.arrow_forward16. (a) Show that IA(w) is a random variable if and only if A E Farrow_forward15. Let 2 {1, 2,..., 6} and Fo({1, 2, 3, 4), (3, 4, 5, 6}). (a) Is the function X (w) = 21(3, 4) (w)+711.2,5,6) (w) a random variable? Explain. (b) Provide a function from 2 to R that is not a random variable with respect to (N, F). (c) Write the distribution of X. (d) Write and plot the distribution function of X.arrow_forward20. Define the o-field R2. Explain its relation to the o-field R.arrow_forward7. Show that An → A as n→∞ I{An} - → I{A} as n→ ∞.arrow_forward7. (a) Show that if A,, is an increasing sequence of measurable sets with limit A = Un An, then P(A) is an increasing sequence converging to P(A). (b) Repeat the same for a decreasing sequence. (c) Show that the following inequalities hold: P (lim inf An) lim inf P(A) ≤ lim sup P(A) ≤ P(lim sup A). (d) Using the above inequalities, show that if A, A, then P(A) + P(A).arrow_forward19. (a) Define the joint distribution and joint distribution function of a bivariate ran- dom variable. (b) Define its marginal distributions and marginal distribution functions. (c) Explain how to compute the marginal distribution functions from the joint distribution function.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning