a. For the equation a x 2 + b x + c = 0 ( a ≠ 0 ) , the formula gives the solutions as x = _______________. b. To apply the quadratic formula, a quadratic equation must be written in the form where ______________ a ≠ 0 . c. To apply the quadratic formula to solve the equation 8 x 2 − 42 x − 27 = 0 , the value of a is _____________, the value of b is _____________, and the value of c is __________. d. To apply the quadratic formula to solve the equation 3 x 2 − 7 x − 4 = 0 , the value of −-b is _____________ and the value of the radicand is _______________. e. The radicand within the quadratic formula is _________ and is called the ___________. f. If the discriminant is negative, then the solutions to a quadratic equation will be (real/imaginary) numbers. g. If the discriminant is positive, then the solutions to a quadratic equation will be (real/imaginary) numbers. h. Given a quadratic function f ( x ) = a x 2 + b x + c = 0 , the function will have no x -intercepts if the discriminant is (less than, greater than, equal to) zero.
a. For the equation a x 2 + b x + c = 0 ( a ≠ 0 ) , the formula gives the solutions as x = _______________. b. To apply the quadratic formula, a quadratic equation must be written in the form where ______________ a ≠ 0 . c. To apply the quadratic formula to solve the equation 8 x 2 − 42 x − 27 = 0 , the value of a is _____________, the value of b is _____________, and the value of c is __________. d. To apply the quadratic formula to solve the equation 3 x 2 − 7 x − 4 = 0 , the value of −-b is _____________ and the value of the radicand is _______________. e. The radicand within the quadratic formula is _________ and is called the ___________. f. If the discriminant is negative, then the solutions to a quadratic equation will be (real/imaginary) numbers. g. If the discriminant is positive, then the solutions to a quadratic equation will be (real/imaginary) numbers. h. Given a quadratic function f ( x ) = a x 2 + b x + c = 0 , the function will have no x -intercepts if the discriminant is (less than, greater than, equal to) zero.
Solution Summary: The author explains the quadratic formula for the equation ax2+bx+c=0.
a. For the equation
a
x
2
+
b
x
+
c
=
0
(
a
≠
0
)
, the formula gives the solutions as
x
=
_______________.
b. To apply the quadratic formula, a quadratic equation must be written in the form where ______________
a
≠
0
.
c. To apply the quadratic formula to solve the equation
8
x
2
−
42
x
−
27
=
0
, the value of a is _____________, the value of b is _____________, and the value of c is __________.
d. To apply the quadratic formula to solve the equation
3
x
2
−
7
x
−
4
=
0
, the value of −-b is _____________ and the value of the radicand is _______________.
e. The radicand within the quadratic formula is _________ and is called the ___________.
f. If the discriminant is negative, then the solutions to a quadratic equation will be (real/imaginary) numbers.
g. If the discriminant is positive, then the solutions to a quadratic equation will be (real/imaginary) numbers.
h. Given a quadratic function
f
(
x
)
=
a
x
2
+
b
x
+
c
=
0
, the function will have no x-intercepts if the discriminant is (less than, greater than, equal to) zero.
Formula Formula A polynomial with degree 2 is called a quadratic polynomial. A quadratic equation can be simplified to the standard form: ax² + bx + c = 0 Where, a ≠ 0. A, b, c are coefficients. c is also called "constant". 'x' is the unknown quantity
Can we have an exponential equation using logarithm however i want to show that one mistake is involved in solving it. Showing the mistake and how to be fixed. Thanks.
Is it possible to show me how to come up with an exponential equation by showing all the steps work and including at least one mistake that me as a person can make. Like a calculation mistake and high light what the mistake is. Thanks so much.
Consider the weighted voting system [16: 15, 8, 3, 1]Find the Banzhaf power distribution of this weighted voting system.List the power for each player as a fraction:
P1:
P2:
P3:
P4:
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.