Concept explainers
(a)
The accelerations of A
(a)
Answer to Problem 11.60P
The accelerations of A
Explanation of Solution
Given information:
The relative change in position of block C with respect to block A
The relative velocity of collar B with respect to block A
The displacement of A
The displacement of B
Calculation:
Show the length and position of the cables as in Figure (1).
Choose the coordinate downward positive and right side positive.
Write the express for total lengths of cables 1:
Differentiate the above equation with respective to time (t).
Denotes
Differentiate the equation (2) with respective to time (t).
Denotes
Write the express for total lengths of cables 2:
Differentiate the above equation with respective to time (t).
Denotes
Differentiate the equation (3) with respective to time (t).
Denotes
At time (t) 0 sec the velocity (v) is zero.
Then, the initial position of cable A, cable B and cable C is equal.
Calculate the position
Here,
Substitute 0 for
Calculate the position
Here,
Substitute 0 for
Calculate the position
Here,
Substitute 0 for
Write the expression for relative change in position of block C with respect to block A:
Substitute
Write the equation for acceleration
Substitute
Calculate the acceleration of block A:
Substitute
Calculate the velocity
Substitute 0 for
Calculate the velocity
Substitute 0 for
Write the equation for relative velocity of block B with respect to block A
Substitute
Substitute
Modify the equation (5).
Substitute
Modify the equation (7).
Substitute
Calculate the time (t):
Substrate equation (13) and (12).
Substitute
Calculate the acceleration
Substitute 4 sec for t in equation (12).
Therefore, the accelerations of A
(b)
The change in position
(b)
Answer to Problem 11.60P
The change in position
Explanation of Solution
Given information:
The relative change in position of block C with respect to block A
The relative velocity of collar B with respect to block A
The displacement of A
The displacement of B
The velocity
Calculation:
Calculate the acceleration
Substitute
Calculate the acceleration
Substitute
Calculate the time (t) using the relation below;
Here,
Substitute 0 for
Calculate the change in positon
Here,
Substitute 0 for
Therefore, the change in position
Want to see more full solutions like this?
Chapter 11 Solutions
VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
- No chatgpt pls will upvotearrow_forwardreading is 0.4 mas SHOWN. Assume h₁ = 0.4 m, h₂ = 0.5 m. (a) Do you know the specific weight of mercury? (b) Do you know the specific weight of gasoline? (c) Do you know the specific weight of oil? (a) YHg = 133,000 (b) Ygas = 6867 (c) Yoil = 8829 eTextbook and Media Part 2 N/m³ N/m³ N/m³ A+ Gasoline t +B Oil -Mercury Attempts: unlimited Did you calculate the pressure difference between two locations using the correct specific weight? Did you assume that the pressures in fluid are the same in a horizontal plane even though they are in different tubes? Are the calculated pressures in a column of fluid always higher at lower elevations? Did you account for the fact that the two horizontal tubes of the U-tube are above the ground? Concepts: The pressure in a fluid is a function of the specific weight of the fluid and the height relative to a reference. Pressure is constant in a horizontal plane of a continuous mass of fluid. (a) What is the initial pressure difference? (PA-PB) (b) What is…arrow_forwardFind the solution of the following Differential Equations 1) "-4y+3y=0 3) "+16y=0 2) y"-16y=0 4) y"-y-6y=0 5) y"+2y=0 7) y"+y=0, (#0) 9) y"-y=0, y(0) = 6, y'(0) = -4 11) y"-4y+3y=0, y(0)=-1, 13) y'(0) = -5 "+2y+2y=0 15) y"-9y=0 17) y"-4y=0 6) y"-2y+2y=0 8) "+4y+5y=0 10) y"-9y=0, y(0) = 2, y'(0) = 0 12) y"-3y+2y= 0, y(0)=-1, y'(0) = 0 14) 4y+4y+y=0 16) "+6y+12y=0 18) 4y+4y+17y=0arrow_forward
- Access Pearson Mastering Engineering Back to my courses Course Home Course Home Scoresarrow_forwardAccess Pearson Mastering Engineering Back to my courses Course Home Course Home Scores Review Next >arrow_forwardAccess Pearson Course Home Scoresarrow_forwardCan you answer this question?arrow_forwardCan you answer this question?arrow_forwardA gear has a gear wheel with 16 teeth. The gear should be dimensioned for the highest and lowest gear ratio. Looking for output power, torque, speed?nin= 2000 rpmmin = 30Nmn=0,9a max= 450 mmModule 4Gear limitsz1 z213 13-1614 14-2615 15-4516 16-10117 17-131418 18-…..I have calculate but I can’t get the right answers…..√16 =459x60/56x57=1.1 lowest59x60/13x13=20,94 highestnut=2000/1.1= 1818rpmnut=2000/20.94=95.5 rpmMut=1.1x30=33 NmMut=20.94x30=628,2 Nm(Right answer)LowestZ=13, M=24,4Nm, n=2462 rpmHighestZ=92, M=172,5Nm, n=347,8 rpmP=5655W on botharrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY