Use the Maclaurin series representation of sinh(x) from the table to create a Maclaurin series of sinh(x^2). Next, differentiate it to create a Maclaurin series for 2xcosh(x^2)
Use the Maclaurin series representation of sinh(x) from the table to create a Maclaurin series of sinh(x^2). Next, differentiate it to create a Maclaurin series for 2xcosh(x^2)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Use the Maclaurin series representation of sinh(x) from the table to create a Maclaurin series of sinh(x^2). Next,
![Table 11.5
1
= 1 + x + x² + . . . + x* + . .
8.
+*, for |x < 1
=1 x + x² -
+(-1)'r* + • . .
Σ(-1), for l지 < 1
1 + x
x²
e = 1 + x +
2!
.2.
·+
k!
for x < ∞
k!
k=0
(-1)*x²k+1
(2k + 1)!
- -1)*x*+1
(2k + 1)!
sin x x -
3!
for x < 0
5!
k=0
(-1)' x²*
(2k)!
2k
(-1)*x*
cos x = 1 -
2!
for x< ∞
4!
k=0
(2k)!
(-1)**'x*
(-1)k+l,k
In (1 + x) = x -
2
3.
for -1 < x < 1
k.
k=1
ナイ
+· • · +
.3.
–In (1 – x) = x +
for -1 < x < 1
k=1
(-1)*x²+1
+. .
(-1) x
3.
(-1)*x²*+1
nx= .
3.
-1
tan
for |x| < 1
2k + 1
2k + 1
5.
.3
2k+1
2k+1
sinh x = x +
3!
+· · ·+
5!
for x < ∞
%3D
(2k+ 1)!
k=0(2k + 1)!'
.2
2k
00
cosh x = 1+
2!
for x<∞
4!
(2k)!
(2k)!'
p(p - 1)(p – 2)- - (p – k + 1)
(1 + x) = E(")
, for |x| < 1 and
()
%3D
1
%3D
%3D
k!
8.
8.
||
:
+.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F7a6e6fa2-624a-47a3-bf18-e2313eb69562%2F1bcd492f-68ba-44b4-b798-80682924a3c6%2Fkvag3ji.jpeg&w=3840&q=75)
Transcribed Image Text:Table 11.5
1
= 1 + x + x² + . . . + x* + . .
8.
+*, for |x < 1
=1 x + x² -
+(-1)'r* + • . .
Σ(-1), for l지 < 1
1 + x
x²
e = 1 + x +
2!
.2.
·+
k!
for x < ∞
k!
k=0
(-1)*x²k+1
(2k + 1)!
- -1)*x*+1
(2k + 1)!
sin x x -
3!
for x < 0
5!
k=0
(-1)' x²*
(2k)!
2k
(-1)*x*
cos x = 1 -
2!
for x< ∞
4!
k=0
(2k)!
(-1)**'x*
(-1)k+l,k
In (1 + x) = x -
2
3.
for -1 < x < 1
k.
k=1
ナイ
+· • · +
.3.
–In (1 – x) = x +
for -1 < x < 1
k=1
(-1)*x²+1
+. .
(-1) x
3.
(-1)*x²*+1
nx= .
3.
-1
tan
for |x| < 1
2k + 1
2k + 1
5.
.3
2k+1
2k+1
sinh x = x +
3!
+· · ·+
5!
for x < ∞
%3D
(2k+ 1)!
k=0(2k + 1)!'
.2
2k
00
cosh x = 1+
2!
for x<∞
4!
(2k)!
(2k)!'
p(p - 1)(p – 2)- - (p – k + 1)
(1 + x) = E(")
, for |x| < 1 and
()
%3D
1
%3D
%3D
k!
8.
8.
||
:
+.
![2xcosh(x²).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F7a6e6fa2-624a-47a3-bf18-e2313eb69562%2F1bcd492f-68ba-44b4-b798-80682924a3c6%2Fndypssh.jpeg&w=3840&q=75)
Transcribed Image Text:2xcosh(x²).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)