EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 9780100257054
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1.11, Problem 99RP
A vertical piston–cylinder device contains a gas at a pressure of 100 kPa. The piston has a mass of 10 kg and a diameter of 14 cm. Pressure of the gas is to be increased by placing some weights on the piston. Determine the local atmospheric pressure and the mass of the weights that will double the pressure of the gas inside the cylinder Answers: 93.6 kPa, 157 kg
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A 15 cm-OD pipe is buried with its centerline 1.25 m below the surface of the ground
[k of soil is 0.35 W/(m K)]. An oil having a density of 800 kg/m³ and a specific heat of 2.1 kJ/(kg
K) flows in the pipe at 5.6 L/s. Assuming a ground surface temperature of 5°C and a pipe wall
temperature of 95°C, estimate the length of pipe in which the oil temperature decreases by
5.5°C.
+
Tε = 5ºC
Z= 1.25 m
D= 15 cm
7p=95°C
Find the solution of the following Differential Equations
1) 4y+y=0,
y(0)=2,
y'(0) = 0.
2) y+y=0,
y(0) = A,
y'(0) = B.
3) "+2y'-8y=0,
y(0)=1,
y'(0)=8.
4) y"-2y-3y=0,
y(0)=1,
y'(0)=7.
5) y"-ky' =0,
y(0)=2,
y'(0) =k.
6) y+ky'-2k2y=0,
y(0)=2,
y'(0) = 2k.
7) y'+4y=0,
y(0)=2.8
y+y-17sin(21)
y(0)=-1.
9) y-y'-6y=0,
y(0)=6.
y'(0)=13.
10) y-y=0,
11) y"-4y+4y=0,
y(0)=4,
y'(0) = 0.
y(0) = 2.1,
y'(0)=3.9
12) y+2y+2y=0,
y(0)=1,
y'(0)=-3.
13)
"+7y+12y=21e",
y(0)=3.5,
y'(0)=-10.
14) "+9y=10e",
y(0)=0.
y'(0) = 0.
15) y+3y+2.25y=91³ +64.
y(0)=1,
y'(0) = 31.5
16) "-6y+5y= 29 cos(21),
y(0)=3.2,
y'(0) = 6.2
17) y+2y+2y=0,
y(0)=0,
y'(0)=1.
18) y+2y+17y=0,
y(0)=0,
y'(0)=12.
19) y-4y+5y=0,
y(0)-1,
y'(0) 2.
20) 9y-6y+y=0.
y(0)=3,
y'(0)=1.
21) -2y+10y=0,
y(0)=3,
y'(0)=3.
22) 4y-4y+37y=0,
(0) 3.
y(0) 1.5
23) 4y-8y+5y=0,
(0)-0,
y(0) 1.
24) y+y+1.25y=0,
y(0) 1.
y'(0) -0.5
25) y+y=2 cos(1).
y(0) 2.
y'(0) = 0.
26) -4y+3y=0,
(0)-3,
y'(0) = 7.
27) y+2y+y=e",
y(0)-0.
y'(0) = 0.
29)
28) y+2y-3y-10sinh(2),…
Note:
Please provide a clear, step-by-step simplified handwritten working out (no explanations!), ensuring it is done without any AI involvement. I require an expert-level answer, and I will assess and rate based on the quality and accuracy of your work and refer to the provided image for more clarity. Make sure to double-check everything for correctness before submitting appreciate your time and effort!.
Question:
Chapter 1 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 1.11 - What is the difference between the classical and...Ch. 1.11 - The value of the gravitational acceleration g...Ch. 1.11 - One of the most amusing things a person can...Ch. 1.11 - An office worker claims that a cup of cold coffee...Ch. 1.11 - 1–5C What is the difference between kg-mass and...Ch. 1.11 - Explain why the light-year has the dimension of...Ch. 1.11 - What is the net force acting on a car cruising at...Ch. 1.11 - 1–8 At 45° latitude, the gravitational...Ch. 1.11 - What is the weight, in N, of an object with a mass...Ch. 1.11 - A 3-kg plastic tank that has a volume of 0.2 m3 is...
Ch. 1.11 - Prob. 11PCh. 1.11 - Prob. 12PCh. 1.11 - Solve Prob. 113 using appropriate software. Print...Ch. 1.11 - A 4-kW resistance heater in a water heater runs...Ch. 1.11 - A 150-lbm astronaut took his bathroom scale (a...Ch. 1.11 - The gas tank of a car is filled with a nozzle that...Ch. 1.11 - Prob. 17PCh. 1.11 - A large fraction of the thermal energy generated...Ch. 1.11 - Prob. 19PCh. 1.11 - 1–20C A can or soft drink at room temperature is...Ch. 1.11 - What is the difference between intensive and...Ch. 1.11 - Is the number of moles of a substance contained in...Ch. 1.11 - Is the state of the air in an isolated room...Ch. 1.11 - The specific weight of a system is defined as the...Ch. 1.11 - What is a quasi-equilibrium process? What is its...Ch. 1.11 - Define the isothermal, isobaric, and isochoric...Ch. 1.11 - Prob. 27PCh. 1.11 - Prob. 28PCh. 1.11 - 1–29C What is specific gravity? How is it related...Ch. 1.11 - 1–31C What are the ordinary and absolute...Ch. 1.11 - Prob. 32PCh. 1.11 - Prob. 33PCh. 1.11 - Prob. 34PCh. 1.11 - Prob. 35PCh. 1.11 - Prob. 36PCh. 1.11 - Prob. 37PCh. 1.11 - Prob. 38PCh. 1.11 - The temperature of a system drops by 45F during a...Ch. 1.11 - Explain why some people experience nose bleeding...Ch. 1.11 - A health magazine reported that physicians...Ch. 1.11 - Someone claims that the absolute pressure in a...Ch. 1.11 - 1–43C Express Pascal’s law, and give a real-world...Ch. 1.11 - Consider two identical fans, one at sea level and...Ch. 1.11 - A vacuum gage connected to a chambee reads 35 kPa...Ch. 1.11 - Prob. 46PCh. 1.11 - 1–47E The pressure in a water line is 1500 kPa....Ch. 1.11 - 1–48E If the pressure inside a rubber balloon is...Ch. 1.11 - A manometer is used to measure the air pressure in...Ch. 1.11 - 1–50 The water in a tank is pressurized by air,...Ch. 1.11 - 1–51 Determine the atmospheric pressure at a...Ch. 1.11 - A 200-pound man has a total foot imprint area of...Ch. 1.11 - The gage pressure in a liquid at a depth of 3 m is...Ch. 1.11 - The absolute pressure in water at a depth of 9 m...Ch. 1.11 - 1–55E Determine the pressure exerted on the...Ch. 1.11 - 1–56 Consider a 70-kg woman who has a total foot...Ch. 1.11 - Prob. 57PCh. 1.11 - The barometer of a mountain hiker reads 750 mbars...Ch. 1.11 - The basic barometer can be used to measure the...Ch. 1.11 - Prob. 61PCh. 1.11 - A gas is contained in a vertical, frictionless...Ch. 1.11 - Reconsider Prob. 158. Using appropriate software,...Ch. 1.11 - Both a gage and a manometer are attached to a gas...Ch. 1.11 - Reconsider Prob. 161. Using appropriate software,...Ch. 1.11 - A manometer containing oil ( = 850 kg/m3) is...Ch. 1.11 - A mercury manometer ( = 13.600 kg/m3) is connected...Ch. 1.11 - Repeat Prob. 165 for a differential mercury height...Ch. 1.11 - The pressure in a natural gas pipeline is measured...Ch. 1.11 - Repeat Prob. 167E by replacing air with oil with a...Ch. 1.11 - Blood pressure is usually measure by wrapping a...Ch. 1.11 - The maximum blood pressure in the upper arm of a...Ch. 1.11 - Prob. 73PCh. 1.11 - Consider a U-tube whose arms are open to the...Ch. 1.11 - Consider a double-fluid manometer attached to an...Ch. 1.11 - Prob. 76PCh. 1.11 - Prob. 77PCh. 1.11 - Calculate the absolute pressure. P1, of the...Ch. 1.11 - Consider the manometer in Fig. 173. If the...Ch. 1.11 - Consider the manometer in Fig. 173. If the...Ch. 1.11 - Consider the system shown in Fig. 177. If a change...Ch. 1.11 - What is the value of the engineering software...Ch. 1.11 - Determine a positive real root of this equation...Ch. 1.11 - Solve this system of three equations with three...Ch. 1.11 - Solve this system of three equations with three...Ch. 1.11 - The reactive force developed by a jet engine to...Ch. 1.11 - A man goes to a traditional market to buy a steak...Ch. 1.11 - What is the weight of a 1-kg substance in N, kN,...Ch. 1.11 - A hydraulic lift is to be used to lift a 1900-kg...Ch. 1.11 - Prob. 92RPCh. 1.11 - Prob. 93RPCh. 1.11 - Prob. 94RPCh. 1.11 - Prob. 95RPCh. 1.11 - Prob. 96RPCh. 1.11 - It is well known that cold air feels much colder...Ch. 1.11 - Reconsider Prob. 1116E. Using appropriate...Ch. 1.11 - A vertical pistoncylinder device contains a gas at...Ch. 1.11 - An air-conditioning system requires a 35-m-long...Ch. 1.11 - The average body temperature of a person rises by...Ch. 1.11 - Balloons are often filled with helium gas because...Ch. 1.11 - Reconsider Prob. 1101. Using appropriate software,...Ch. 1.11 - Determine the maximum amount of load, in kg, the...Ch. 1.11 - The lower half of a 6-m-high cylindrical container...Ch. 1.11 - A vertical, frictionless pistoncylinder device...Ch. 1.11 - A pressure cooker cooks a lot faster than an...Ch. 1.11 - Prob. 108RPCh. 1.11 - Consider a U-tube whose arms are open to the...Ch. 1.11 - Prob. 110RPCh. 1.11 - A water pipe is connected to a double-U manometer...Ch. 1.11 - A gasoline line is connected to a pressure gage...Ch. 1.11 - Repeat Prob. 1110 for a pressure gage reading of...Ch. 1.11 - The average atmosphere pressure on earth is...Ch. 1.11 - Prob. 115RPCh. 1.11 - Prob. 116RPCh. 1.11 - Consider the flow of air through a wind turbine...Ch. 1.11 - The drag force exerted on a car by air depends on...Ch. 1.11 - An apple loses 3.6 kJ of heat as it cools per C...Ch. 1.11 - Consider a fish swimming 5 m below the free...Ch. 1.11 - The atmospheric pressures at the top and the...Ch. 1.11 - Consider a 2.5-m-deep swimming pool. The pressure...Ch. 1.11 - During a heating process, the temperature of an...Ch. 1.11 - At sea level, the weight of 1 kg mass in SI units...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Which of the following are illegal variable names in Python, and why? x 99bottles july2009 theSalesFigureForFis...
Starting Out with Python (4th Edition)
CONCEPT QUESTIONS
15.CQ3 The ball rolls without slipping on the fixed surface as shown. What is the direction ...
Vector Mechanics for Engineers: Statics and Dynamics
Using your text editor, enter (that is, type in) the C++ program shown in Display 1.8. Be certain to type the f...
Problem Solving with C++ (10th Edition)
This optional Google account security feature sends you a message with a code that you must enter, in addition ...
SURVEY OF OPERATING SYSTEMS
How is the hydrodynamic entry length defined for flow in a pipe? Is the entry length longer in laminar or turbu...
Fluid Mechanics: Fundamentals and Applications
Comprehension Check 7-14
The power absorbed by a resistor can be given by P = I2R, where P is power in units of...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 4. Block A and B are two different pieces of wood. Determine the minimum dimension for "a", if the shear stress of the wood is 50Mpa. The thickness of the wood is 30cm. 600N Aarrow_forward1. Determine the reaction force at A. 60 kN 5 B 1 m 1 m- -1 m 4 3 m 30 kN marrow_forwardFind the Laplace Transform of the following functions 1) f() cos(ar) Ans. F(s)=7 2ws 2) f() sin(at) Ans. F(s)= s² + a² 3) f(r)-rcosh(at) Ans. F(s)= 2as 4)(t)=sin(at) Ans. F(s)= 2 5) f(1) = 2te' Ans. F(s)= (S-1) 5+2 6) (1) e cos() Ans. F(s) = (+2)+1 7) (1) (Acostẞr)+ Bsin(Br)) Ans. F(s)- A(s+a)+BB (s+a)+B 8) f()-(-)() Ans. F(s)= 9)(1)(1) Ans. F(s): 10) f(r),()sin() Ans. F(s): 11) 2 k 12) 0 13) 0 70 ㄷ.. a 2a 3a 4a 2 3 4 14) f(1)=1, 0<1<2 15) (1) Ksin(t) 0arrow_forward2. Determine the average normal stress developed in rod AB. The mass is 50kg and the diameter of the rod AB is 8mm. B 8 mmarrow_forward2.64 A 2.75-kN tensile load is applied to a test coupon made from 1.6-mm flat steel plate (E = 200 GPa, v = 0.30). Determine the resulting change in (a) the 50-mm gage length, (b) the width of portion AB of the test coupon, (c) the thickness of portion AB, (d) the cross-sectional area of portion AB. 2.75 kN A 12 mm 50 mm B 2.75 kNarrow_forwardProcedure:1- Cartesian system, 2(D)/(3)D,type of support2- Free body diagram3 - Find the support reactions4- If you find a negativenumber then flip the force5- Find the internal force3D\sum Fx=0\sum Fy=0\sum Fz=0\sum Mx=0\sum My=0\Sigma Mz=02D\Sigma Fx=0\Sigma Fy=0\Sigma Mz=05- Use method of sectionand cut the elementwhere you want to findthe internal force andkeep either side of thesectionarrow_forward3. The design of a pump and pipe system has been completed, except for the valves. The system is used to transpor10t water at 120°F through 2 nom sch 40 commercial steel pipe at a required flow rate of 85 gpm. Without the valves, the pump selected has the capability to overcome an additional 18 psi of pressure drop due to the valves and still provide the required flow rate. The pipe/valve joints are threaded. Determine how many 2-inch globe valves can be installed in this pump and pipe system.arrow_forward4. Figure 1 shows a pump and pipe network being used to transport heptane at 120°F to a large, elevated, closed storage tank. The tank is pressurized and maintained at 18 psia. The volumetric flow rate of the heptane is 500 gpm. a. Specify the nominal diameter of the check valve. b. Determine the pump discharge pressure required (psia) to move the heptane through the discharge pipe. Plank = 18 psia Liquid level Large pressurized storage tank 40 ft All pipes are 6-nom sch 40 commercial steel Standard 90° elbows and 180° bend Total length of straight pipe = 115 ft Class 300 swing check valve INH Pump Figure 1: Pressurized storage tank systemarrow_forward2. In a particular section of a fluid system, a 30% ethylene glycol mixture is flowing through a 6- nom xs cast iron pipe at a temperature of 0°C. In this section of piping, the velocity must be maintained in the range 1.5 m/sarrow_forward1. Steam leaves the boiler of a power plant at 5 MPa, 500°C as shown in the following figure. As the steam passes to the turbine, the temperature drops to 496°C before it enters the turbine due to a heat loss through the pipe's insulation. The pressure drop in the pipe connecting the boiler to the turbine is negligible. The steam then passes through an adiabatic turbine and exits at 10 kPa. The turbine has an isentropic efficiency of 85% and is delivering 1000 MW of power. Determine the following. P = 5 MPa T₁ = 500°C Boiler P₁₂ =5 MPa Τ =496°C 7 = 85% W = 1,000 MW P=1 atm To=25°C Turbine 3+ P = 10 kPa a. The heat transfer rate from the pipe connecting the boiler to the turbine (in MW) b. The change in flow exergy rate as the steam flows through the pipe (MW). This represents exergy that is lost to the environment and unavailable for power delivery. Comment on the magnitude of this exergy loss compared to the power delivered by the turbine. What factor(s) would warrant better…arrow_forwardAn aluminum rod of length L = 1m has mass density p = 2700 kg and Young's modulus E = 70 GPa. The rod is fixed at both ends. The exact natural eigenfrequencies of the rod are wexact E = √ ρ for n=1,2,3,. . . . 1. What is the minimum number of linear elements necessary to determine the fundamental frequency w₁ of the system? Discretize the rod in that many elements of equal length, assemble the global system of equations KU = w² MU, and find the fundamental frequency w₁. Compute the relative error e₁ = (w1 - wexact) /w exact Sketch the fundamental mode of vibration. 2. Use COMSOL to solve the same problem. Show the steps necessary to find the fundamental frequency and mode of the rod. What is the relative error using linear elements and a normal mesh?arrow_forwardA ball with a mass of 5.0 kg is hanging from a string and is initially at rest. A bullet with a mass of 10.0 g and a velocity of 200.0 m/s is fired at the ball. The bullet embeds itself inside the ball. How high (h) do the ball and the bullet rise? Gravitational acceleration: g=9.81g = 9.81g=9.81 m/s².arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Thermodynamics: Maxwell relations proofs 1 (from ; Author: lseinjr1;https://www.youtube.com/watch?v=MNusZ2C3VFw;License: Standard Youtube License