![Python Programming: An Introduction to Computer Science](https://www.bartleby.com/isbn_cover_images/9781590282779/9781590282779_largeCoverImage.gif)
Modified gpasort program
Program plan:
- Import the necessary modules in “grade_sort.py” file.
- Define the “make_Student()” function,
- Returns student record values to the caller.
- Define the “read_Students()” function,
- Returns the list of student record to the caller.
- Define the “write_Students()” function,
- Write the student record.
- Define the “sort()” function,
- Create empty list.
- Create “for” loop,
- Assign the data from the file.
- Append the data to the new list using append() method.
- Call the function “sort()” to sort the data.
- Call the function “reverse()” to reverse the data.
- Return new list.
- Define the “main()” function,
- Assign the input file.
- Read the students record from the input file.
- Sort the data by calling “sort()” function.
- Assign the output file.
- Call the function “write_Students()”.
- Call the “main()” function.
- Create a class Student in “gpa.py” file,
- Define the “_init_()” method.
- Assign name hours and GPoints.
- Define the “get_Name()” method.
- Return the name.
- Define the “get_Hours()” method.
- Return hours.
- Define the “getQ_Points()” method.
- Return GPoints.
- Define the “gpa()” method.
- Return gpa
- Define the “make_Student()” method.
- Return name, hours, and grade points.
- Define the “main()” function.
- Define the “get_Name()” method.
- Assign name hours and GPoints.
- Define the “_init_()” method.
- Call the “main()” function.
![Check Mark](/static/check-mark.png)
Explanation of Solution
Program:
File name: “gpa_sort.py”
#Import required module
from gpa import Student
#Define the function make_Student()
def make_Student(info_Str):
#Make multiple assignment
Name, Hours, Gpoints = info_Str.split("\t")
#Return constructor
return Student(Name, Hours, Gpoints)
#Define the function read_Students()
def read_Students(file_name):
#Open the input file for reading
in_file = open(file_name, 'r')
#Create an empty list
Students = []
#Create for loop to iterate over all lines in a file
for line in in_file:
#Append the line in a list
Students.append(make_Student(line))
#Close the input file
in_file.close()
#Return the list
return Students
#Define the function write_Students()
def write_Students(Students, file_name):
#Open output file to write
out_file = open(file_name, 'w')
#Create a for loop to iterate over list
for s in Students:
#Print output
print("{0}\t{1}\t{2}".format(s[1],
s[2], s[3]), file = out_file)
#Close the output file
out_file.close()
#Define the function
def sort(Students):
#Create empty list
new_Data = []
#Create for loop
for i in range(len(Students)):
#Assign tuple
x = (Students[i].gpa(), Students[i].get_Name(),
Students[i].get_Hours(), Students[i].getQ_Points())
#Append the data at the end of new list
new_Data.append(x)
#Call the function "sort()" to sort the data
new_Data.sort()
#Call the function "reverse()" to reverse the data
new_Data.reverse()
#Return new list
return new_Data
#Define main() function
def main():
#Print the string
print("This program sorts student grade information by GPA")
#Assign the file name
file_name = "gpa1.txt"
#Read the data from a file
data = read_Students(file_name)
#Sort the data
data = sort(data)
#Assign the file name
file_name = "gpa_(sort1).txt"
#Call the function
write_Students(data, file_name)
if __name__ == '__main__':
#Call the main() function
main()
File name: “gpa.py”
#Create a class Student
class Student:
#Define _init_() method
def __init__(self, Name, Hours, Gpoints):
self.Name = Name
self.Hours = float(Hours)
self.Gpoints = float(Gpoints)
#Define get_Name() method
def get_Name(self):
#Return the name
return self.Name
#Define get_Hours()
def get_Hours(self):
#return hours
return self.Hours
#Define getQ_Points()
def getQ_Points(self):
#return grade points
return self.Gpoints
#Define the function gpa()
def gpa(self):
#return the value
return self.Gpoints / self.Hours
#Define the function make_Student()
def make_Student(info_Str):
#Make multiple assignment
Name, Hours, Gpoints = info_Str.split("\t")
#Return the constructor
return Student(Name, Hours, Gpoints)
#Define the main() function
def main():
#Open the input file for reading
file_name = input("Enter the name of the grade file: ")
in_file = open(file_name, 'r')
#Set best to the record for the first student in the file
best = make_Student(in_file.readline())
#Process lines of the file using "for" loop
for line in in_file:
#Make the line of file into a student record
s = make_Student(line)
#Checck whether the student is best so far
if s.gpa() > best.gpa():
#Assign the best student record
best = s
#Close the input file
in_file.close()
#Print information about the best student
print("The best student is:", best.get_Name())
print("Hours:", best.get_Hours())
print("GPA:", best.gpa())
if __name__ == '__main__':
#Call the main() function
main()
Contents of “gpa1.txt”
Adams, Henry 127 228
Computewell, Susan 100 400
DibbleBit, Denny 18 41.5
Jones, Jim 48.5 155
Smith, Frank 37 125.33
Output:
This program sorts student grade information by GPA
>>>
Screenshot of output file “gps_(sort1).txt after execution:
Want to see more full solutions like this?
Chapter 11 Solutions
Python Programming: An Introduction to Computer Science
- Draw the NFA for thisarrow_forwardWhat are three examples each of closed-ended, open-ended, and range-of-response questions? thank youarrow_forwardCreate 2 charts using this data. One without using wind speed and one including max speed in mph. Write a Report and a short report explaining your visualizations and design decisions. Include the following: Lead Story: Identify the key story or insight based on your visualizations. Shaffer’s 4C Framework: Describe how you applied Shaffer’s 4C principles in the design of your charts. External Data Integration: Explain the second data and how you integrated it with the Halloween dataset. Compare the two datasets. Attach screenshots of the two charts (Bar graph or Line graph) The Shaffer 4 C’s of Data Visualization Clear - easily seen; sharply defined• who's the audience? what's the message? clarity more important than aestheticsClean - thorough; complete; unadulterated, labels, axis, gridlines, formatting, right chart type, colorchoice, etc.Concise - brief but comprehensive. not minimalist but not verboseCaptivating - to attract and hold by beauty or excellence does it capture…arrow_forward
- How can I resolve the following issue?arrow_forwardI need help to resolve, thank you.arrow_forwardLet the user choose encryption or decryption. For encryption, let user input the key in Hexadecimal number, the plain text in Hexadecimal number, output the ciphertext (in hexadecimal numbers). For decryption, let user input the key in Hexadecimal number, the ciphertext (in hexadecimal numbers), output the decrypted message (Hexadecimal number). Both encryption and decryption should output the different operation results for each round like the following: For example: Round 1: E(R0) = ...... (Hex or Binary) K1 = …… E(Ro) xor K1 = S-box outputs = …… f(Ro1, K1) = ….. L2 =R1 =……. La = Ra Round 2: .....• No Encryption/Decryption libraries or functions provided by the third party are allowed. Submit your program codes to Moodle with the notes of how to compile and run your program.arrow_forward
- When the given integer variable numberOfPackages is: greater than 12, output "Needs more than one box". between 5 inclusive and 12 inclusive, output "Large box". between 0 exclusive and 4 inclusive, output "Small box". less than or equal to 0, output "Invalid input". End with a newline.arrow_forwardsummarize in a short paragraph how to Advance Incident Response and Automation in ML home based security systemsarrow_forward1.[30 pts] Computers generate color pictures on a video screen or liquid crystal display by mixing three different colors of light: red, green, and blue. Imagine a simple scheme, with three different lights, each of which can be turned on or off, projecting onto a glass screen: We can create eight different colors based on the absence (0) or presence (1) of light sources R,G and B: R G B Color 0 0 0 Black 0 0 1 Blue 0 1 0 Green 0 1 1 Cyan 1 0 0 Red 1 0 1 Magenta 1 1 1 0 Yellow 1 White 1 Each of these colors can be represented as a bit vector of length 3, and we can apply Boolean operations to them. a. The complement of a color is formed by turning off the lights that are on and turning on the lights that are off. What would be the complement of each of the eight colors listed above? b. Describe the effect of applying Boolean operations on the following colors: Λ 1. Red(100) ^ Magenta(101)= Blue(001) 2. Bue(001) | Green(010)= 3. Yellow(100) & Cyan(011)= 2.[30 pts] Perform the following…arrow_forward
- D. S. Malik, Data Structures Using C++, 2nd Edition, 2010arrow_forwardMethods (Ch6) - Review 1. (The MyRoot method) Below is a manual implementation of the Math.sqrt() method in Java. There are two methods, method #1 which calculates the square root for positive integers, and method #2, which calculates the square root of positive doubles (also works for integers). public class SquareRoot { public static void main(String[] args) { } // implement a loop of your choice here // Method that calculates the square root of integer variables public static double myRoot(int number) { double root; root=number/2; double root old; do { root old root; root (root_old+number/root_old)/2; } while (Math.abs(root_old-root)>1.8E-6); return root; } // Method that calculates the square root of double variables public static double myRoot(double number) { double root; root number/2; double root_old; do { root old root; root (root_old+number/root_old)/2; while (Math.abs (root_old-root)>1.0E-6); return root; } } Program-it-Yourself: In the main method, create a program that…arrow_forwardI would like to know the main features about the following 3 key concepts:1. Backup Domain Controller (BDC)2. Access Control List (ACL)3. Dynamic Memoryarrow_forward
- C++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningEBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENTMicrosoft Visual C#Computer ScienceISBN:9781337102100Author:Joyce, Farrell.Publisher:Cengage Learning,
- New Perspectives on HTML5, CSS3, and JavaScriptComputer ScienceISBN:9781305503922Author:Patrick M. CareyPublisher:Cengage LearningProgramming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:CengageC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337102087/9781337102087_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337671385/9781337671385_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337102100/9781337102100_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305503922/9781305503922_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133187844/9781133187844_smallCoverImage.gif)